

Master Thesis

Supporting chatbot intent recognition with sentiment analysis

Master of Science in Computer Science at the Ruhr West

University of Applied Sciences

Mohamed Alaa Eddine Cherni

Supervision:

Prof. Dr. Anne Stockem-Novo

Prof. Dr. Fatih Gedikli

Bottrop, July 2022

Acknowledgment

2

Acknowledgment

I would like to express my sincere gratitude to my Directors of Memory, Prof. Dr. Anne

Stockem-Novo and Prof. Dr. Fatih Gedikli. I thank them for supervising, guiding,

assisting, and advising me. I address my sincere thanks to all the professors and persons

who, through their words, writings, advice, and criticism, have guided my reflections and

agreed to meet with me and answer my questions throughout my study. I thank my

wonderful parents, who have always been there for me.

Abstract

3

Abstract

Developing an intelligent chatbot that can imitate human-to-human interaction has

become important in recent years. For this reason, many studies have been conducted to

evaluate the quality of chatbots. Furthermore, various approaches and tools, such as

sentiment analysis, have been created to improve the performance of chatbots.

This study examines previous research to identify the quality dimensions used to measure

chatbots performance in order to develop a general chatbot assessment model that

evaluates and compares chatbots quality. The developed evaluation model measures ten

chatbot quality dimensions. This model is based on user experience. It requires human

testers to interact with the chatbot to test its functioning and then a quantitative approach

is used to collect data from user testing by conducting a survey with these testers. In this

survey, they are instructed to evaluate the quality of the chatbot using a questionnaire that

contains the items needed to evaluate each dimension.

This study also investigates whether sentiment analysis can improve the quality of

chatbots and, if so, to identify the dimensions improved with sentiment analysis. For this

reason, two chatbot versions are implemented using the Rasa framework (one that cannot

detect sentiment and the other that analyzes sentiment and responds accordingly).

Following that, we used our evaluation model to evaluate and compare the two chatbot

versions with two groups of participants by conducting a survey. In this survey, each

group tested the functioning of one version. Then, both groups were instructed to use the

items of the evaluation model to evaluate the version they tested. The goal of this survey

was to evaluate the validity and reliability of the items used in the evaluation model to

evaluate chatbots, and also to determine if sentiment analysis improved the chatbot

quality by comparing survey results between the two groups.

The results show that items used in the assessment model to evaluate chatbots are valid

and reliable. The findings also indicate that sentiment analysis improves the chatbot’s

quality. However, it improves the quality of some dimensions but not the majority of

them.

Table of Contents

4

Table of Contents

Acknowledgment .. 2

Abstract ... 3

Table of Contents .. 4

List of Figures ... 8

List of Tables ... 9

Acronyms ... 10

1. Introduction .. 11

1.1. Motivation .. 12

1.2. Problem statement: ... 13

1.3. Outline .. 14

2. Background ... 15

2.1. Dialogue system ... 15

 Components of dialogue system .. 15

 The Input Decoder ... 16

 Natural Language Understanding (NLU) .. 16

 The Dialogue Manager .. 16

 Domain-Specific Component... 17

 Response Generator ... 17

 Speech Generation ... 17

2.2. Classification of dialogue system ... 17

 Chatbots ... 17

2.2.1.1. Rule-based chatbots .. 18

2.2.1.2. Corpus-Based chatbots ... 18

2.2.1.3. Hybrid Models .. 19

 Task-based dialogue systems/Task-oriented dialogue systems ... 19

2.3. Relevant dialogue systems ... 20

 Meena .. 20

 Replika ... 20

 Mitsuku .. 20

2.4. Rasa Framework ... 21

 Architecture ... 21

2.4.1.1. Rasa NLU ... 22

2.4.1.2. Rasa Core ... 26

2.4.1.3. Action Server .. 28

2.4.1.4. The input/output channels, Tracker store, Lock store, File system 28

Table of Contents

5

 Workflow / dialogue management flow... 29

 File structure .. 30

 Training data .. 31

2.4.4.1. NLU Module Data .. 31

2.4.4.2. RasaCore data ... 31

 Rasa server/Rasa Open Source HTTP API .. 32

2.5. Sentiment analysis .. 33

 Sentiment analysis algorithms ... 33

 Vader sentiment ... 34

2.6. Flask ... 35

2.7. Ngrok.. 35

2.8. SQLite .. 35

2.9. Chatbots evaluation .. 36

 The PARAdigm for DIalogue System Evaluation (PARADISE) .. 36

 Commercial Chatbot: Performance Evaluation, Usability Metrics and Quality Standards of

Embodied Conversational Agents ... 37

 Perspectives for Evaluating Conversational AI ... 39

 Evaluating Quality of Chatbots and Intelligent Conversational Agents 39

 On Evaluating and Comparing Open Domain Dialog Systems ... 41

 Evaluating and Informing the Design of Chatbots ... 42

 A Survey on Evaluation Methods for Chatbots ... 43

 Can we Improve the User Experience of Chatbots with Personalisation? 43

3. The evaluation Model ... 45

3.1. Evaluation model Overview ... 45

 Evaluate the quality of chatbots ... 46

 Comparing the quality of chatbots ... 46

3.2. Evaluation model dimensions .. 47

 Usefulness .. 47

 Ease-of-Use.. 48

 Effectiveness .. 48

 Efficiency ... 48

 Visual appearance .. 49

 Responses in unexpected situations ... 49

 Personality and humanity ... 50

 Response time .. 50

 Security and privacy .. 50

 User satisfaction ... 51

4. Implementation ... 54

4.1. General use case ... 54

Table of Contents

6

4.2. System architecture .. 55

 Rasa framework ... 55

4.2.1.1. NLU module ... 55

4.2.1.2. Rasa Core ... 63

4.2.1.3. Training data... 68

4.2.1.4. Rasa HTTP API .. 69

 Front end client .. 69

 Database: ... 70

4.3. Main tasks and conversational user/bot flow ... 70

 Inform .. 71

 Booking ... 74

 Cancel flight... 77

 Cancel return flight .. 79

 Modify travel date .. 80

 Modify return date ... 81

 Make claim .. 82

5. Research methodology ... 84

5.1. The reliability and validity ... 85

 Reliability .. 85

 Construct validity ... 85

5.1.2.1. Convergent validity .. 85

5.1.2.2. Discriminant validity .. 86

5.2. Chatbot quality improvement with sentiment analysis .. 86

5.3. Data collection ... 87

6. Survey results .. 88

6.1. Reliability and validity ... 88

 Reliability .. 88

 Validity .. 89

6.1.2.1. Convergent validity .. 89

6.1.2.2. Discriminant validity .. 90

6.2. Chatbot quality improvement with sentiment analysis .. 91

7. Discussion .. 97

7.1. Chatbot evaluation.. 98

7.2. Chatbot improvement with sentiment analysis .. 98

 Chatbot overall quality improvement .. 98

 Dimensions improvement .. 99

8. Conclusion and outlook .. 101

8.1. Limitations ... 101

Table of Contents

7

8.2. Future Research .. 102

References.. 103

Statutory Declaration ... 107

List of Figures

8

List of Figures

Figure 2.1: Components of a dialogue system ... 15

Figure 2.2: Rasa architecture .. 21

Figure 2.3: NLU components life cycle ... 23

Figure 2.4: Rasa dialogue flow ... 29

Figure 3.1: The dimensions of the evaluation model ... 47

Figure 4.1: General use case diagram ... 54

Figure 4.2: The system architecture ... 55

Figure 4.3: The pipeline steps .. 59

Figure 4.4: Neutral user sentiment ... 60

Figure 4.5: Negative user sentiment ... 60

Figure 4.6: Discussion without sentiment analyzer .. 61

Figure 4.7: Discussion with sentiment analyzer ... 61

Figure 4.8: Conversational user/bot flow for sentiment analysis 62

Figure 4.9: The policies .. 67

Figure 4.10: The user interface ... 69

Figure 4.11: Conversational user/bot flow for Inform process 71

Figure 4.12: Inform about a flight .. 72

Figure 4.13: Multiple information entered by the user in a single message 72

Figure 4.14: Booking confirmation .. 73

Figure 4.15: Stop the process ... 73

Figure 4.16: Modify data during the process .. 73

Figure 4.17: Bad sentiment detected during the inform process 73

Figure 4.18: Conversational user/bot flow for booking process 74

Figure 4.19: Start of payment process .. 75

Figure 4.20: Payment and confirmation ... 75

Figure 4.21: Conversational user/bot flow for cancel flight ... 77

Figure 4.22: Cancel flight ... 78

Figure 4.23: Cancel flight when a negative user mood is detected 78

Figure 4.24: Conversational user/bot flow for modify travel date process 80

Figure 4.25: Modify travel date .. 80

Figure 4.26: Modify travel date confirmation .. 80

Figure 4.27: Conversational user/bot flow for the claim process 82

Figure 4.28: Make a claim .. 83

Figure 4.29: Claim confirmation .. 83

List of Tables

9

List of Tables

Table 3.1: The items of the evaluation model .. 53

Table 4.1: Main Intents ... 56

Table 4.2: Main entities .. 57

Table 4.3: Main slots .. 59

Table 4.4: Main forms .. 65

Table 4.5: Main custom actions .. 67

Table 6.1: Cronbach Alpha, Composite Reliability, Average Variance Extracted 89

Table 6.2: HTMT ratios of all dimensions ... 90

Table 6.3: Survey Results of the first group ... 92

Table 6.4: Survey Results of the second group .. 93

Table 6.5: The P-value of the unpaired t-test of overall averages between the two groups

 .. 94

Table 6.6: : The P-value of the unpaired t-test of overall averages per dimension

between both groups ... 95

Table 6.7: Hypotheses and results .. 95

Acronyms

10

Acronyms

CR: Composite Reliability

AVE: Average Variance Extracted

HTMT: Heterotrait-Monotrait ratio

TAM: Test Acceptance Model

HTTP: Hypertext Transfer Protocol

CSS: Cascading Style Sheets

JS: JavaScript

SQL: Structured Query Language

SDK: Software Development Kit

Introduction

11

1. Introduction

A chatbot is a computer program that interacts with a human user using natural language

[1]. The first chatbot was developed in 1960. It follows a set of rules to generate responses

based on user input [2]. Nowadays, many chatbots and virtual assistants have been

developed and are available commercially, such as Amazon Alexa, Google Assistant,

Apple Shiri, and others. These assistants can mainly answer users’ questions and can

perform a variety of activities such as setting alarm, scheduling meetings, online

shopping, etc1. Furthermore, several businesses have developed their own chabots and

embedded them into their websites to assist their customers. Because, these chatbots

provide support seven days a week and twenty-four hours a day and can save the cost of

hiring a real human assistant2. For this reason, developing an intelligent and an accurate

chatbot that can imitate human-to-human conversations has become an important task in

recent years. Because, a poor developed chatbot, that cannot understand users and give

them responses that they didn’t expect, can easily lead to dissatisfaction and ruin the user

experience [3].

Since the usage of chatbots has grown in recent years, many studies have been conducted

to evaluate their quality, which permits to identify and fix gaps in order to enhance the

performance of the chatbot. Furthermore, other studies have been conducted to evaluate

and to compare the quality of different chatbots or versions of the same chatbot in order

to determine the best among them. In fact, a high-quality chatbot may improve the user

experience, but a badly designed one might lead to user’s dissatisfaction. However,

evaluating and comparing chatbot systems in terms of accuracy, efficiency, and the ability

to satisfy users remains challenging [4].

Furthermore, several techniques and tools, such as sentiment analysis3 or grammar and

spelling correction [5], have been developed to increase the quality of the dialogue

between users and chatbots.

Sentiment analysis or Opinion mining is one of the most important tools used to improve

the quality of chatbots. It is an approach used to detect a user's sentiment based on his

1 https://www.zdnet.com/home-and-office/smart-home/the-best-voice-assistant
2 https://www.eatmy.news/2020/12/an-overview-of-chatbot-technology.html
3 https://www.revechat.com/blog/chatbot-sentiment-analysis/

https://www.eatmy.news/2020/12/an-overview-of-chatbot-technology.html

Introduction

12

utterances. Sentiment analysis has grown in popularity in recent years, and it is currently

used in a variety of fields and industries. Nowadays, it is primarily used in social media

monitoring to determine users' opinions on specific topics and in business market

monitoring to determine how users feel about a company's products or services. It is also

integrated into many existing chatbots to enable them to understand human sentiments

and respond accordingly4. The main objective of integrating sentiment analysis into

chatbots is to give consumers the sense that they are speaking with a real person who

understands their emotions. Because people are emotional beings, they expect the person

with whom they are communicating to understand their feelings, which can enhance their

experience and motivate them to use chatbots in the future5.

This thesis aims to develop a general evaluation model that covers several quality

dimensions for evaluating and comparing chatbots’ performance, and to investigate how

sentiment analysis can improve the quality of chatbots.

1.1. Motivation

Despite their growing popularity, chatbots frequently face assessment and quality issues.

Most existing studies aimed at evaluating the performance of chatbots focused on quality

dimensions related to their research and the type of chatbot they were evaluating, rather

than proposing a general evaluation model that is applicable to all types of chatbots.

Nevertheless, many studies have been conducted to develop a general model to evaluate

other types of software applications such as web apps (e.g WebQual [6]).

Sentiment analysis, is considered as a significant chatbot improvement tool since it

enables the chatbot to comprehend user sentiment and react accordingly. Thus giving the

user the sense that they are chatting with a real person which can enhance their

satisfaction.

This study has two main goals. First, it focuses on developing and evaluating a

multidimensional evaluation model that can be used to evaluate and compare the

performance of chatbots. The second goal of this study is to investigate whether sentiment

4 https://monkeylearn.com/sentiment-analysis/
5 https://www.revechat.com/blog/chatbot-sentiment-analysis/

https://monkeylearn.com/sentiment-analysis/

Introduction

13

analysis can improve the quality of chatbots and, if so, to identify which quality

dimensions are improved by sentiment analysis.

1.2. Problem statement:

In the previous section, we discussed the lack of previous research focusing on evaluating

chatbots’ performance, as well as the importance of sentiment analysis as a tool for

chatbots enhancement. The purpose of this thesis is to first create a general model for

evaluating and comparing chatbots’ quality, and after that to investigate if sentiment

analysis can enhance chatbots’ quality. To reach the desired objectives, we will

investigate the following research questions:

Research question 1: What are the quality dimensions that can be used to evaluate

chatbots?

The purpose behind answering this question is to identify the quality dimensions that

permit the evaluation of the performance of chatbots. To accomplish this, we will refer to

the literature review to investigate the quality attributes used in the previous studies to

evaluate the quality of chatbots. Following that, we will develop a general evaluation

model based on user experience that requires human testers and surveys to measure and

compare the quality of chatbots.

Research question 2: Can sentiment analysis improve the chatbot quality?

The goal of answering this research question is to investigate if sentiment analysis can

increase the chatbot’s quality by identifying the quality dimensions improved with

sentiment analysis. For this purpose, we will implement two versions of the same chatbot

(The first version is incapable of understanding user sentiment, while the second is an

improved version that can analyze sentiment and reply accordingly) using Rasa

framework. Following that, we will utilize our assessment model to evaluate and to

compare the quality between the two versions.

Introduction

14

1.3. Outline

This document is structured as follows: In Chapter 2, we present the background

knowledge and the literature review required for this work. Chapter 3 details the chatbot

evaluation model. Chapter 4 describes the chatbot implementation. Chapter 5 details the

research methodology. In chapter 6, we present the evaluation results. Discussion on the

evaluation results and the methodology are presented in Chapter 7. Finally, Chapter 8

concludes the thesis, specifies the limitations of the study, and presents the future work.

.

Background

15

2. Background

2.1. Dialogue system

A dialogue system is a computer program that interacts with a human user using natural

language. The conversation system provides an interface between the user and a

computer-based application that allows natural interaction with the application. The

dialogue system could be voice based or text based, and it can be used in phones, PDAs,

vehicles, robots, and web browsers, etc. Although different Dialogue Systems have varied

architectures, they all possess the same set of phases: input recognition, natural language

understanding, dialogue management, response generation, and output rendering [1].

 Components of dialogue system

Figure 2.1: Components of a dialogue system

As shown in figure 2.1, there are seven key components to a dialogue system: Natural

Language Understanding, Input Decoder, Domain-Specific Component, Dialogue

Manager, Response Generator, and Output Renderer [1].

Background

16

 The Input Decoder

The Input Decoder is the component that detects the user input. It transforms the data into

simple text. This component is only present in dialogue systems that aren't text-based.

This component entails the translation of spoken sound (user utterances) to text (a string

of words) [1].

 Natural Language Understanding (NLU)

Natural Language Understanding (NLU) is a subfield of computer science that focuses

on applying computational techniques to learn, understand, and produce human language

content. NLU can be used for a variety of purposes, such as supporting human-human

communication and improving communication between humans and machines. The

extraction of structured, semantic information from unstructured natural language input,

such as chat messages, is the overall purpose of NLU services. The two major pieces of

information that NLU needs to extract when using a dialogue system are intents and

entities. An intent is a mapping between what a user says and what action the dialogue

system should perform. It represents the user intention of the entire message and is not

restricted to a specific location within it. An entity, on the other hand, is a tool used to

extract parameter values from natural language inputs. There is a corresponding entity for

any important data that needs to be extracted from a user's message. The value of an entity

is called a slot. For this message "What is the weather in Paris?" for example, the intent

is "asking the weather," but "Paris" is a slot of a potential entity named "City" [7].

 The Dialogue Manager

The Dialogue Manager is in charge of all parts of the conversation. It provides a semantic

representation of the system response using a semantic representation of the user's input

and determining how the text fits in the overall context. It accomplishes a variety of tasks,

including: Maintains the discussion history, adopts certain dialogue approaches, deals

with malformed and unrecognized text, retrieves information from files or databases,

determines the best response for the user, manages initiative and system response, handles

pragmatics issues, discourse analysis [1].

Background

17

 Domain-Specific Component

The Dialogue Manager needs to communicate with external software, such as a database

or an expert system. As a result, the query or plans must be converted from the dialogue

manager's internal representation to the format utilized by the external domain specific

system (e.g. SQL). The domain-specific components are in charge of this interfacing. The

Natural Language Query Processing system can handle this. From natural language, this

system generates SQL queries [1].

 Response Generator

This component is responsible for producing the response. It involves making decisions

on what information should be included, how information should be arranged, word

choice, and message syntactic structure. Simple methods, such as inserting retrieved data

into specified slots in a template, are used by current systems [1].

 Speech Generation

This component converts the message created by the response generation component into

spoken language. There are two ways that can be utilized to generate speech. The first

method is to employ prerecorded canned speech, which can be combined with retrieved

or previously recorded samples, for example. "Welcome, how can I help you?" The

second method is to employ text-to-speech synthesis. Text is used to generate speech in

this case [1].

2.2. Classification of dialogue system

 Chatbots

A chatbot, often known as a bot, is a computer program that simulates human

conversation. Users interact with a chatbot using the chat interface or by voice, just as

they would with a real person. Chatbots interpret the user's utterances and respond with a

pre-defined response. They can be found on platforms such as Facebook Messenger,

Whatsapp, Skype, Slack, Line, Kik, Wechat, and even in websites. Chatbots have an

application layer, a database, APIs, and a User Interface. One of the benefits of chatbots

Background

18

is that, unlike apps, they aren't downloaded, don't need to be updated, and don't take up

memory on the phone. One of chatbots most appealing advantages is that, they are

available 24 hours a day/seven days a week and a single chatbot may respond to several

people at the same time6.

Chatbots can be classified into the following categories:

2.2.1.1. Rule-based chatbots

Rule-based chatbots use a set of rules to generate answers, e.g. if an input a is received,

then perform action b and return response c. The Rule-based method consists of a pair of

creating-pattern responses or templates. These templates may be created to handle a great

range of inputs by using Natural Language Processing methods such as Semantic Role

Labeling, Named Entity Recognition, and Part of Speech tagging, but it necessitates

that the user enters entire sentences. The rule-based approaches may take more time than

the other methods since they need the construction of many hand-written rules, but they

may also be able to handle a broader range of topics as a result [8].

2.2.1.2. Corpus-Based chatbots

Corpus-based chatbots are AI-powered bots that combine the simplest features of Rule-

based and Intellectually independent chatbots. Artificial Intelligence (AI) could be

viewed as a computerized version of human intelligence. Artificial intelligence (AI) is a

branch of computer science that focuses on developing intelligent machines that function

and "think" like humans. AI-powered chatbots not only understand natural language, but

also follow a predetermined path to ensure that they answer the user's problem. They can

remember the conversation's context as well as the user's preferences. These chatbots can

switch from one topic of conversation to another as needed, and they can respond to any

user request at any time7.

AI chtbots are also divided into two categories:

6 https://www.eatmy.news/2020/12/an-overview-of-chatbot-technology.html
7 https://www.eatmy.news/2020/12/an-overview-of-chatbot-technology.html

https://www.eatmy.news/2020/12/an-overview-of-chatbot-technology.html
https://www.eatmy.news/2020/12/an-overview-of-chatbot-technology.html

Background

19

Retrieval-based models:

A database of possible responses is required for retrieval-based models. This approach

obtains the most relevant candidates from the database that match the current utterance,

then selects the most appropriate response for retrieval [9].

Generative model:

Generative models use machine learning techniques to construct answers in real time. The

model is used to produce responses by "translating" inputs into responses, and it is trained

on a dataset of real dialogues. Some of the most current models for generating chatbot

replies are Statistical Machine Translation (SMT) models [9].

2.2.1.3. Hybrid Models

Hybrid models are a combination of rule-based and deep learning-based design. They're

created with the help of a collection of pre-defined rules and machine learning algorithms

[10].

 Task-based dialogue systems/Task-oriented dialogue systems

Task-based dialogue systems are AI chatbots that are more advanced than standard

chatbots. Normal chatbots are utilized to respond to user questions in a question/answer

process, whereas task oriented dialogue systems are meant to assist a user in completing

a task, such as making an airplane reservation or purchasing a product. Every task-

oriented conversation system is based around frames. A frame is a type of knowledge

structure that represents the types of intentions that the system may extract from human

sentences. It is composed of a collection of slots, each of which can take a set of possible

values. This collection of frames is commonly referred to as a domain ontology. The set

of slots in a task-based dialogue frame defines what the system needs to extract. For

example, a slot in the travel domain could be of the type city, date, airline, etc. [10].

Background

20

2.3. Relevant dialogue systems

 Meena

Meena is a chatbot developed by Google. The model has 2.6 billion parameters and is an

end-to-end trained neural conversational model. It was trained on 341GB of filtered social

media conversations and employs a Transformer architecture known as The Evolved

Transformer. Meena has 1.7 times higher model capacity and was trained on 8.5 times

more data than the biggest GPT-2 model. The trained chatbot is considered as one of

the most intelligent and specific existing chatbots. In comparison to other chatbots, the

chatbot has amazing context understanding, although it still has limitations. Repetition

and occasionally behaving as if the chatbot's prior response was from the user are two of

its main weaknesses. Furthermore, while the work is centered on sensibleness and

specificity, it does not take into account long-term memory or persona [8].

 Replika

Replika is a chatbot that mixes neural generation and retrieval-based approaches. When

producing responses, the neural generation takes into account the persona-based and the

emotional embeddings. The retrieval-based model is trained using a hard negative mining

technique, which forces the model to generate low matching scores for similar contexts

and responses. This is done to avoid "echo-responses," which occur when a retrieval-

based model retrieves the most semantically comparable response rather than the most

suitable response. The system also takes into account conversation history and context by

encoding it and providing it to retrieval and/or generating models. Furthermore, the agent

can comment on and ask questions regarding images sent by the user [8].

 Mitsuku

Mitsuku is a rule-based chatbot created with Artificial Intelligence Markup Language

(AIML). Mitsuku has received the most Loebner prizes (5 times), where it was recognized

as the most human-like chatbot in the competition. Mitsuku has a small memory where it

keeps user information and certain contextual keywords. Some reported issues with the

Background

21

chatbot include its repetitiveness, where it constantly utilizes the same template answer

[8].

2.4. Rasa Framework

Rasa is a Python open source framework for chatbot development that uses machine

learning approach. Rasa is designed to offer developers full control and customization

over the development of their bots. Rasa creates all the baseline implementations, which

facilitates developers work and allows them to concentrate on the domain-specific

tasks. Rasa consists of two parts: Rasa NLU and Rasa Core. Rasa NLU is in charge of

understanding a user's input, which can include intent classification and named entity

recognition, slots extraction, etc. Rasa Core, on the other hand, manages the dialog flow

using a neural network that predicts the next action depending on the current state.

Alpacabot (Alex the Alpacabot: a virtual real estate agent 2021), Moltron (Moltron:

educating users about machine learning 2021), Picpay (Connecting Brazilian Families

with Emergency Government Assistance 2021), and others are examples of Rasa

chatbots. The majority of these AI chatbots are text-based [11, 12, 13].

 Architecture

Figure 2.2: Rasa architecture8

8 https://rasa.com/docs/rasa/arch-overview/

https://rasa.com/docs/rasa/arch-overview/

Background

22

The general architecture of the Rasa framework is seen in Figure 2.2.

2.4.1.1. Rasa NLU

Rasa NLU is the component in charge of NLU prediction, which can include intent

classification and named entity recognition, slots extraction, etc. This is accomplished by

providing training examples that indicate how the chatbot should understand user

messages, and then a model is trained using these examples. These example are defined

in the “nlu.yml” in the data folder of Rasa framework [8].

The three most important categories that Rasa NLU can recognize and extract are the

following9:

The Intents: An intent represents the user intention of the entire message. All intents

need to be defined in the “domain.yml” file of Rasa framework.

Intent example:

intents:

 - greet

The entities: An entity is a tool used to extract parameter values from natural language

inputs. All entities needed are defined in the “domain.yml” file.

Example of entities:

entities:

 - PERSON

 - time

 - membership_type

 - priority

The Slots: Slots are quite important in Rasa. Because it functions as a key-value store, it

can be used to store information provided by the user. They can support a variety of types,

including text, boolean, float, list, category, custom, and unfeaturized. Slots can be filled

not only from extracted entities (e.g. "Paris" is a slot of an entity named "City"), but also

from intents, from text, or from a custom action. Filling the slots with intents allows to

apply the filling regardless of the message's intent (e.g. a slot with a Boolean type can be

9 https://rasa.com/docs/rasa/domain

Background

23

filled with true when an intent accept is detected and false when an intent deny is

detected). The from-text filling will use the text of the most recent user utterance to fill

the slot. The custom filling will use custom actions to fill the slot. All slots needed are

defined in the “domain.yml” file. Using the keyword mapping, the type of filling (from

intents, from entities, custom, or from text) is specified.

An example of slots:

slots:

 cuisine:

 type: text

 mappings:

 - type: from_entity

 entity: cuisine

Figure 2.3: NLU components life cycle10

The NLU prediction is based on NLU components. These components are responsible of

training the model for natural language understanding prediction, such as detecting user

intent, extracting named entities and slots, and predicting sentiments [8].

10 https://rasa.com/docs/rasa/tuning-your-model/

https://rasa.com/docs/rasa/tuning-your-model/

Background

24

The NLU module is implemented as a pipeline that processes the input text in a series of

steps called as components. The lifecycle of Rasa NLU components is represented in

Figure 2.3. A context object is passed to each component before the pipeline starts so that

they can dissipate information. The output of one component can be utilized as the input

of the next using this object. Each component of the pipeline is run in turn, and the output

of each is available to the next. The Rasa SDK permits developers to implement their own

components called Custom Graph Components or Custom Components. All pipeline

steps are defined in the “config.yml” file of Rasa framework under the keyword

“pipeline” [11].

 Predefined NLU components:

The following are some of the most important predefined NLU components11:

The WhitespaceTokenizer: The WhitespaceTokenizer creates a token for every

whitespace separated character sequence from the user sentence Any character not found

in the range a-zA-Z0-9_#@& will be replaced with whitespace.

RegexFeaturizer: The RegexFeaturizer creates features for entity extraction and intent

classification. It generates a list of regular expressions defined in the training data format

during training. A feature will be set for each regex that indicates whether the expression

was detected in the user message or not. To facilitate classification, all features will be

fed into an intent classifier / entity extractor.

LexicalSyntacticFeaturizer: It provides lexical and syntactic features for a user message

in order to assist entity extraction. It creates features for entity extraction and passes over

each token in the user message with a sliding window, creating features according to the

configuration.

CountVectorsFeaturizer: The CountVectorsFeaturizer creates intent classification and

response selection features. It represents user messages, intents, and responses as a bag

of words.

DIETClassifier: The DIET (Dual Intent and Entity Transformer) is a multi-task

architecture for classifying intent and recognizing entities. The architecture is based on a

transformer that serves both tasks.

11 https://rasa.com/docs/rasa/components/

https://rasa.com/docs/rasa/components/

Background

25

EntitySynonymMapper: It Converts synonymous entity values to the same value. This

component ensures that identified entity values are mapped to the same value if the

training data contains defined synonyms.

Response Selector component: It's a dictionary with the key representing the response

selector's retrieval intent and the value containing predicted responses, confidence, and

the response key. It may be used to create a response retrieval model to predict a bot

response straight from a list of possible responses. The dialogue manager uses the model's

prediction to utter the predicted responses. It follows the exact same neural network

architecture and optimization as the DIETClassifier and embeds user inputs and response

labels in the same space.

The FallbackClassifier: If the intent classifier was unable to identify an intent with a

confidence greater than or equal to the FallbackClassifier's threshold, the

FallbackClassifier classifies the user message with the intent NLU fallback. It also creates

a Fallback action that handles messages with uncertain NLU predictions.

 Custom Graph Components:

Rasa contains a variety of NLU components that can be used to train the NLU module.

The Rasa framework permits developers to implement their own NLU components called

Custom Component or Custom Graph Components in order to perform a specific NLU

task for which Rasa does not have a pre-build component for example, a sentiment

analyzer, or a word checker that corrects spelling errors, etc. The Custom Component is

implemented as a Python class that contains all of the necessary methods to train the NLU

module to perform that NLU specific task. The file containing the Custom Component

class and the name of the Custom Component class must be referenced using the format

“<file_name>.<CustomComponentClass_name>” under the keyword “pipeline” of

the “config.yml” file of Rasa framework. There are two sorts of Custom Components:

The pre-trained Custom Components (for example, trained on different datasets and

packaged as python libraries, pkl files, etc.) and the Custom Components that need to be

trained using the Rasa NLU training data12.

12 https://rasa.com/blog/enhancing-rasa-nlu-with-custom-components/

https://rasa.com/blog/enhancing-rasa-nlu-with-custom-components/

Background

26

2.4.1.2. Rasa Core

The dialog management is the responsibility of the Rasa Core. It keeps track of a

conversation and decides how the chatbot should respond. Based on previous user inputs,

it generates a probability model that decides a set of actions to perform, based on the

“rules” and “stories” defined in the training data. Rasa Core can execute three type of

actions: “Simple response”, “custom action”, or “form”. Internally, Rasa Core uses the

concept of policies to specify how the next action is chosen. All policies are defined in

the “config.yml” of Rasa framework under the keyword “policies” [8,11].

 Type of actions:

Simple Response: The responses are simple messages or utterances that the chatbot can

employ to reply to user input. These responses are defined in the “domain.yml” of Rasa

framework under the keyword “responses”. A response can be a simple string, a button,

or an image. Each utterance has one or more candidate responses, from which the chatbot

will choose one randomly. Responses are simple messages that the chatbot uses to reply

to user intent, but custom actions must be utilized when more complex tasks are required

[8,13].

Example of a simple response:

responses:

 utter_greet:

 - text: "Hi there!"

 utter_bye:

 - text: "See you!"

Form: The form is how Rasa gathers a set of information for a certain goal. All forms are

defined in “domain.yml” file under the keyword “forms”. Each form contains a set of

slots that represents the data that must be gathered. This set of slots must be defined

directly under the name of the form declared in the “forms” section in “domain.yml”.

Once the form has been activated, the chatbot will use the slots’ utterances defined in the

“responses” section in “domain.yml” to ask the user and collect responses so that the

form's slots can be filled. The form is automatically stopped after all of the slots have

been filled [13].

Background

27

Custom action: While responses are simple messages that the chatbot can use to respond

to user input, custom actions are used when more complex tasks are required, such as

testing if the information entered by the user matches certain conditions and returning a

specific response, modifying slots values to influence next actions, calling an external

API, or storing and retrieving data from an external database. The “action.py” file of Rasa

open source contains all customs actions' code. Every custom action is built as a class

with two main methods: "name" and "run." The "name" method always returns a string

with the custom action's name. The "run" section, on the other hand, provides the code

for the custom action's task, which may include accessing an external API, saving and

retrieving data from an external database, and etc. [8,14].

A custom action with the following name “validate <form_name>” can also be used to

test and validate a form's required slots. As a result, the chatbot will only accept

slots values that match specific conditions. A class for the given custom action must be

built in the “action.py” file. This class mainly includes the "name" method, which returns

the name of the given custom action, as well as additional methods for testing and

validating the form’s required slots values. Each of these methods contains the code that

permits to test if the slot value meets the validation requirements. These methods are

named in the following format “Validate <SlotName>”, where the “<SlotName>” field

containing the name of the slot to be tested and validated. All custom actions need to be

declared in “domain.yml” under the “actions” keyword [8,13].

 Policies:

Policies specify the next action to take based on user input. They are all defined in the

“config.yml” file. Multiple policies can be defined at the same time. In this situation, the

policy with the greatest confidence score prevails. Policies are a mix of machine learning

(such as Transformer Embedding Dialogue Policy, Memoization Policy) and rule-based

(Rule Policy) policies [11,13].

Some of the most commonly utilized Rasa policies are as follows13:

The Transformer Embedding Dialogue (TED) Policy: It is a multi-task architecture

that predicts next actions and recognizes entities. The architecture is composed of

different transformer encoders that are shared between the two activities. A Conditional

13 https://rasa.com/docs/rasa/policies/

https://rasa.com/docs/rasa/policies

Background

28

Random Field (CRF) is used to predict a sequence of entity labels. The dialogue

transformer encoder output and the system action labels are embedded into a single

semantic vector space for the next action prediction.

The RulePolicy: The RulePolicy is a policy that deals with conversation parts that have

a fixed behavior (e.g. business logic). It predicts the next action based on rules provided

in training data. All rules are defined in the “rules.yml” files in the training folder of Rasa

framework. To handle cases when the policies cannot predict the next action with high

confidence, the RulePolicy can be configured to run a default action and to revert back to

the state of the conversation before the user message that caused the fallback. Thus, it

will not influence the prediction of future actions

Memoization Policy: It checks if the current dialogue corresponds to the stories defined

in “stories.yml” file in the training folder of Rasa framework. It predicts the next action

with a confidence of 1.0 based on the matching stories in training data. If no matching

conversations are found, the policy predicts None with a confidence level of 0.0.

2.4.1.3. Action Server

The Rasa Action Server permits to execute all custom actions implemented in “action.py”

file of Rasa framework. the Action Server runs independent of the NLU Module and the

Rasa Core. Because Rasa Core's only requirement is to be able to communicate with the

Action Server via a standardized API, the Rasa SDK forces an object-oriented pattern to

ensure compatibility with the Rasa Core. The Rasa Action Server is called every time

Rasa Core predicts a custom action to be executed14.

2.4.1.4. The input/output channels, Tracker store, Lock store, File system

The input/output channels: They are the chatbot application's frontend (e.g. Web

browser, Facebook Messenger, etc.) [13].

The Tracker store: The tracker is an object that saves information about the conversation

state. The conversation tracker is saved in the tracker store. The tracker is stored in

memory by default, but an external database can be used to store the tracker [13].

14 https://rasa.com/docs/rasa/custom-actions/

https://rasa.com/docs/rasa/policies#rule-policy

Background

29

The Lock store: Rasa employs a ticket lock system to ensure that incoming messages for

a given conversation ID are processed in the correct order, and conversations are locked

while messages are being processed. This means that many Rasa servers can run as

replicated services in parallel, and clients don't have to submit messages to the same node

for a given conversation ID. Lock store is used to save conversation locks. Conversation

locks are kept in memory by default15.

The File system: Trained models can be accessible through a file system, such as a local

hard disk, an HTTP server, or an external cloud, where they are stored [13].

 Workflow / dialogue management flow

Figure 2.4: Rasa dialogue flow

The architecture or dialogue management flow consists of 6 steps, as shown in figure 2.4:

The received message is first delivered to the Interpreter, who converts it into a dictionary

containing the original text, the purpose, and any entities recognized. This is handled by

the NLU module. Second, the message is transmitted from the Interpreter to the Tracker,

who keeps track of the state of the conversation. After that, each policy receives the

current status of the tracker. Then, each policy determines the next action to take. Next,

the tracker logs the chosen action. Finally, a response is sent to the user16.

15 https://rasa.com/docs/rasa/lock-stores/
16 https://rasa.com/docs/rasa/next/architecture/

https://rasa.com/docs/rasa/lock-stores/

Background

30

 File structure

After installing Rasa, the “rasa init” command can be used to start a project. After that,

the following files and folders are created: domain.yml, config.yml, actions.py,

credentials.yml, endpoints.yml and a data folder that contains the rules.yml, stories.yml

and nlu.yml files [13].

The domain.yml file: It represents the chatbot's domain of knowledge. It contains all the

names of all intents, entities, slots, custom actions, forms, and the name and text of

simple responses or utterances that the chatbot may execute.

The config.yml file: It defines the Rasa NLU's “pipeline” and the Rasa Core's “policies”.

The pipeline is where the NLU components are listed. These components are used to

extract features such as intents and entities from the user input. Policies is where the Rasa

Core policies are defined to predict the next action to take based on user input.

The action.py: The actions.py is where all custom actions classes are implemented.

These custom actions are executed by the action server every time Rasa core predicts that

a custom action is required.

The credentials.yml file: It includes elements related to messaging platform

authentication, such as Slack, Facebook Messenger, and others.

The data folder: The data folder consists of three files: nlu.yml, rules.yml, and

stories.yml. These three files contain the chatbot’s training data. nlu.yml lists example

texts with entities if needed for each intent. Rules represent combinations of intent and

actions. The order in which these collections' intent and actions are listed determines the

order in which they are executed. Stories are collections similar to Rules, the only

difference between them is that a story has a starting and an ending points.

The endpoints.yml file: It contains endpoint information. For example, if the models are

stored on a cloud server, an endpoint is needed to access them. It specifies also where

“tracker store” saves the conversation tracker, whether in the memory or in a SQL

database.

Background

31

 Training data

To make NLU prediction and predict the next action, both modules NLU module and

Rasa Core need to be trained.

2.4.4.1. NLU Module Data

To make NLU prediction, the Rasa NLU module must be trained using NLU training

data. NLU training data consists of example user utterances categorized by intent. This

generally includes any entities contained in his message. The nlu.yml file in the data

folder of Rasa framework contains all of the NLU training data [11].

Example of NLU training data17:

- intent: greet

 examples: |

 - Hey

 - Hi

 - hey there [Sara](name)

2.4.4.2. RasaCore data

The Rasa Core can be trained to predict next action using rules and stories, which are a

sort of training data.

The Rules: Rules describe short pieces of conversations that should always follow the

same path. It links a user's intent to one or more actions. An action could be a simple

response, a custom action or a form. The rules can recognize intents or actions (response,

custom action or form) only if they are defined in the domain.yml file. If the action used

in a rule is a form, the chatbot will keep requesting the user to fill up all of the form's

required slots. All necessary rules must be defined in the Rasa’s rules.yml in the data

folder [11].

Example of a simple Rule18:

rules:

17 https://rasa.com/docs/rasa/training-data-format/#example
18 https://rasa.com/docs/rasa/rules/

https://rasa.com/docs/rasa/training-data-format/#example
https://rasa.com/docs/rasa/rules/

Background

32

- rule: Say `hello` whenever the user sends a message with intent `greet`

 steps:

 - intent: greet

 - action: utter_greet

The Stories: Stories are a larger collection of Rasa rules that describe a conversation

from beginning to end. Stories can be divided into smaller stories that can be related using

checkpoint keywords. After training the chatbot with the “rasa train” command, the

models generated employ stories to predict the next action. All necessary stories must be

defined in the Rasa’s stories.yml in the data folder [13].

Example of a simple story19:

stories:

- story: story to find a restaurant

 steps:

 - intent: find_restaurant

 - action: restaurant_form

 - action: utter_restaurant_found

 Rasa server/Rasa Open Source HTTP API

The command line “rasa run” permits to run the chatbot as a server. Running this Rasa

server permits to interact with the chatbot over webhook endpoints using chat applications

such as Facebook Messenger, What’s up, Slack or Telegram. However, it does not

enable the interaction with a front-end client like a web app or a mobile app via HTTP.

The Rasa Open Source HTTP API allows a front-end client to communicate with a

running Rasa server via the API HTTP endpoints. The command line “rasa run --enable-

api” activates the HTTP API, allowing the Rasa server to respond the front end client

HTTP requests20.

19 https://rasa.com/docs/rasa/rules/
20 https://rasa.com/docs/rasa/http-api/

https://rasa.com/docs/rasa/rules/

Background

33

2.5. Sentiment analysis

Sentiment analysis is a technique of natural language processing (NLP) for identifying

positive, negative or neural sentiment in texts. Sentiment analysis focuses on a text's

polarity (positive, negative, or neutral), but it can also identify particular feelings and

emotions (angry, happy, sad, etc.), urgency (urgent, not urgent), and intents (interested

vs. not interested). Sentiment analysis is quickly becoming an essential tool for

monitoring and understanding sentiment in all types of data, as humans express their

emotions and opinions more openly than ever before. Nowadays, businesses frequently

utilize it to identify sentiment in social data, analyze brand reputation, and comprehend

customers. Using sentiment analysis, companies can learn what makes customers happy

or upset by automatically analyzing customer feedback, such as thoughts in survey

responses and social media conversations, to tailor products and services to match their

customers’ demands21.

 Sentiment analysis algorithms

There are three main types of algorithms for implementing sentiment analysis, depending

on the amount of data to analyze and the accuracy of the model22.

Rule-based: A rule-based system employs a set of manually crafted rules to analyze

sentiment. Various NLP techniques developed in computational linguistics may be

included in these rules, such as stemming, tokenization, parsing, and part-of-speech

tagging, and Lexicon (i.e. lists of words and expressions).

Automatic: Unlike rule-based systems, automatic approaches depend on machine

learning techniques rather than manually constructed rules. A sentiment analysis task

is modeled as a classification problem, in which a classifier is given a text and outputs a

category, such as positive, negative, or neutral. To implement a sentiment classifier using

the machine learning technique, two processes are required: training and prediction.

Based on the test samples used for training, the model learns to associate a specific input

21 https://monkeylearn.com/sentiment-

analysis/#:~:text=Sentiment%20analysis%20(or%20opinion%20mining,feedback%2C%20and%20unders

tand%20customer%20needs.
22 https://monkeylearn.com/sentiment-

analysis/#:~:text=Sentiment%20analysis%20(or%20opinion%20mining,feedback%2C%20and%20unders

tand%20customer%20needs.

https://monkeylearn.com/sentiment-analysis/#:~:text=Sentiment%20analysis%20(or%20opinion%20mining,feedback%2C%20and%20understand%20customer%20needs.
https://monkeylearn.com/sentiment-analysis/#:~:text=Sentiment%20analysis%20(or%20opinion%20mining,feedback%2C%20and%20understand%20customer%20needs.
https://monkeylearn.com/sentiment-analysis/#:~:text=Sentiment%20analysis%20(or%20opinion%20mining,feedback%2C%20and%20understand%20customer%20needs.
https://monkeylearn.com/sentiment-analysis/#:~:text=Sentiment%20analysis%20(or%20opinion%20mining,feedback%2C%20and%20understand%20customer%20needs.
https://monkeylearn.com/sentiment-analysis/#:~:text=Sentiment%20analysis%20(or%20opinion%20mining,feedback%2C%20and%20understand%20customer%20needs.
https://monkeylearn.com/sentiment-analysis/#:~:text=Sentiment%20analysis%20(or%20opinion%20mining,feedback%2C%20and%20understand%20customer%20needs.

Background

34

(i.e. a text) with the corresponding output (tag) during the training process. The text input

is converted into a feature vector by the feature extractor. To generate a model, feature

vectors and tags (such as positive, negative, or neutral) are fed into the machine learning

algorithm. In the prediction process, the feature extractor is utilized to convert unseen text

inputs into feature vectors. The model then uses these feature vectors to generate

predicted tags such as positive, negative, or neutral.

Hybrid: Hybrid system combine both rule-based and automatic techniques into a single

system. One of the major advantages of these methods is that the results are frequently

more accurate.

 Vader sentiment

VADER stands for "Valence Aware Dictionary and sEntiment Reasoner" and is open

source. The tool was released in 2014 and focuses mostly on social media messages. It

rates the input using a lexicon-driven approach along with additional heuristics. VADER

provides consistent ratings and does not require any training data because it is rule based

approach. It's included in the NLTK package and can be used on unlabeled text data. Its

development was divided into 7 phases: Gather lexical features of established sentiment

lexicons, gather lexical features characteristic for microblogging domains, Rate lexical

feature candidates, Filtering, building human heuristics, Evaluate heuristics, and

evaluation and results. VADER sentiment analysis is based on a lexicon that contains

more than 7500 words. This lexicon maps lexical features to emotion intensities called

sentiment scores. The VADER sentiment analysis produces a sentiment score or emotion

intensity in the range -4 to +4, with -4 being the most negative and 4 being the most

positive. The midpoint 0 indicates a neutral feeling. A text's sentiment score is computed

by summing the intensity of each word in the text. In Python programming language, a

normalization is applied to the total to map it between -1 and +123. VADER performed

exceptionally well in a variety of domains, including tweets, movie reviews, and product

reviews [15].

23 https://medium.com/@piocalderon/vader-sentiment-analysis-explained-f1c4f9101cd9

https://medium.com/@piocalderon/vader-sentiment-analysis-explained-f1c4f9101cd9

Background

35

2.6. Flask

Flask is a web framework written in Python that facilitates the development of web

applications. Flask is typically referred to as a micro framework since it lacks

functionality such an ORM (Object Relational Manager). It is intended to keep the

application's core simple and scalable. It has a lot of features, such as URL routing and a

template engine24.

2.7. Ngrok

Ngrok is a globally distributed reverse proxy that serves web services from any cloud,

private network, or private workstation. Ngrok is the quickest way to put an app on

the internet. It allows to test apps against a development backend as well as build

webhook consumers and demo websites without needing to deploy them. It requires no

setup and gets started with a single command. It makes it simple to connect to networks

because no port forwarding, dynamic DNS, or VPN are required25.

2.8. SQLite

SQLite is an in-process library that creates a transactional SQL database engine that is

self-contained, serverless, and requires no configuration. SQLite's code is in the public

domain, which means it can be used for any purpose, commercial or private. SQLite is

the most widely used database on the world, with an uncountable number of applications,

including some high-profile projects. SQLite does not have a separate server process. It

reads and writes to regular disk files directly. The database file format is cross-platform,

allowing to copy databases between 32-bit and 64-bit platforms easily26.

24 https://pythonbasics.org/what-is-flask-python/
25 https://ngrok.com/
26 https://www.sqlite.org/about.html

https://www.sqlite.org/about.html

Background

36

2.9. Chatbots evaluation

Articles and research papers are examined in this section to provide a comprehensive

review of existing chatbot evaluation metrics. These papers are discovered mostly

through the keywords: chatbot, chatbot evaluation, evaluation framework, evaluation

metrics, quality, performance, and their combinations. These Papers were selected if they

contained at least one of the mentioned keywords in their title or abstract, and if they

discussed some element of chatbot quality. Following the refinement, we selected eight

papers that were rated most relevant. Some of these publications are based on the

combinations of previous studies, while others are general views on evaluation aspects

and their applicability to a research. A summary of the contents of these papers is

described below.

 The PARAdigm for DIalogue System Evaluation (PARADISE)

The PARAdigm for DIalogue System Evaluation (PARADISE) framework [16] is one of

the oldest frameworks for evaluating chatbots. It was developed by Marilyn et al. in 1997.

The framework decouples task requirements from an agent's dialogue behaviors, supports

for comparisons of dialogue strategies, calculates performance over sub dialogues and

entire dialogues, specifies the relative contribution of various factors to performance, and

allows the comparisons of agents performing different tasks by normalizing for task

complexity.

PARADISE supports comparisons among dialogue strategies by offering a task

representation that decouples what an agent has to do in terms of task requirements from

how the agent carries out the task via dialogue. PARADISE employs a decision-theoretic

framework to specify the relative contribution of multiple factors in an agent's

performance overall. Performance is represented as a weighted function of a task-based

success measure and dialogue-based cost measurements, with weights calculated by

correlating user satisfaction with performance. Performance may also be calculated for

sub dialogues as well as entire conversations. PARADISE combines a heterogeneous set

of performance measures (i.e., user satisfaction, task success, and conversation cost) into

a single performance evaluation function using decision theory methodologies. The use

of decision theory necessitates the specification of both the decision problem's objectives

Background

37

and a set of measures (known as attributes in decision theory) for operationalizing the

objectives. Other novel components of PARADISE include the use of the Kappa

coefficient [17] to operationalize task success and the use of linear regression to quantify

the relative impact of the success and cost factors to user satisfaction. This Kappa

coefficient is calculated from confusion matrix that summarizes how effectively an agent

fulfills the information requirements of a specific task for a set of dialogues instantiating

a set of scenarios.

 Commercial Chatbot: Performance Evaluation, Usability Metrics and

Quality Standards of Embodied Conversational Agents

In this research paper published in 2015, Kuligowska [18] developed eleven aspects to

evaluate the performance of commercial virtual assistants in the B2C

industry. Kuligowska used a standard measurement tool with a rating scale of 1 to 5,

assigning ratings of 1-very poor, 2-poor, 3-satisfactory, 4-good, and 5-very good to each

of the 11 dimensions. Finally, Kuligowska generated a simple average of all the evaluated

dimensions, providing an overview of the chatbot's overall quality. She employed this

approach to evaluate and compare the performance of seven commercial chatbots.

According to her, the chatbot with the highest overall rating performed the best.

Kuligowska used the following quality dimensions to evaluate chatbots:

The visual look: According to kuligowska, the book is frequently evaluated by its cover.

As a result, the outer appearance of a virtual assistant is an important factor that

determines the quality of its implementation.

The form of implementation on the website: This aspect evaluates the visibility of a

virtual assistant embedded on a website.

The text-to-speech unit: According to Kuligowska, the Text-To-Speech module, that

converts written text into synthetic speech, can boost user trust. As a result, it is one of

the quality components that must be considered while evaluating chatbots.

The knowledge base (basic knowledge): This aspect focuses on measuring the chatbot

ability to respond simple questions such as its name, the current time, etc.

Background

38

The knowledge base (specialized knowledge): This aspect measures the chatbot built-

in specialized knowledge such as the products and services offered, company contact

information, and advanced knowledge about the firm.

The presentation of additional knowledge and functionality: This quality aspect focus

on the additional functionalities performed by chatbots to facilitate user navigation on the

website (e.g., "Back" button or scrolling the chat history, Term "Help" or "Info" button,

etc).

Conversational skills and context-sensitivity: This aspect measures the chatbot's ability

to lead a coherent conversation, handle complex user input, and take control of the

conversation introducing topics.

 Personality traits: According to Kuligowska, commercial chatbots must be equipped

not only with skills, but also with the ability to express personality. It is essential to add

a number of psychological layers to a virtual assistant's knowledge base, such as

personality traits, biographical details, and expressed emotions.

Personalization options: Personalization options have a significant positive influence on

consumers' judgment of the quality of interaction with a commercial chatbot. Users

considered a conversational agent as more likable, trustworthy, and useful when they

can customize its characteristics and appearance.

Emergency responses in unexpected situations: Commercial virtual assistants should

be able to manage emergency situations such as understanding a user's unclear statement,

detecting a lack of information on a specific question, dealing with insults, recognizing

multiple languages, etc. Any typos, misspellings, or colloquialisms used in the dialogue

should also be also recognized by the chatbot.

The ability to classify the chatbot and website by the user: User feedback on the

chatbot is important for the chatbot's owner. Every chatbot must allow users to rate their

overall satisfaction with the chatbot using a rating method such as a five-star rating, for

example.

Background

39

 Perspectives for Evaluating Conversational AI

In their paper published in 2017, Jadeja and Varia [19] proposed an evaluation model that

contain four perspectives to evaluate the chatbot’s performance. The perspectives are the

following:

The User Perspective: This perspective focuses on the measurement user satisfaction,

usability, and other factors. According to them, recognizing the user's expectations,

maintaining security and trust when private/confidential user data are required, and

understanding user strategies may improve the following criteria. However, the

fundamental drawback of this perspective is that it is time and money consuming.

The Information Retrieval Perspective: The measurement of the accuracy of

information provided by the chatbot as well as the reaction time, or how quickly a user's

input is processed, is the main goal of this perspective. According to them, the

Information Retrieval Perspective is an important evaluation factor, but high IR

qualities do not necessarily make users happy and satisfied, because user experiences are

impacted by a variety of factors.

The Linguistic Perspective: It focusses on the measurement of four factors related to a

chatbot's linguistic ability. First, the quality, which refers to how accurate the agent's

phrases are. Second, the quantity of information, which evaluates how much information

the bot provides. The third relation is to analyze how closely the responses are connected

to the topic. Finally, the manner, which examines how direct and straightforward the

conversation is in general.

the AI perspective: the measurement of the chatbot’s human like interaction abilities is

the main objective of this perspective. It can be made using the Turing Test. This

perspective permits to improve problem solving and influencing skills of a chatbot.

 Evaluating Quality of Chatbots and Intelligent Conversational Agents

Radziwill and Benton [20] reviewed 32 paper and 10 articles concerning chatbots

evaluation methods in their research released in 2017, to identify the quality attributes of

chatbots. After reviewing these papers and articles, they concluded that the evaluation

methods are generally linked with the ISO 9214 notion of usability. The ISO 9214 defined

Background

40

the usability as the effectiveness, efficiency, and satisfaction with which specific users

achieve particular goal in specific environments. the effectiveness of chatbots is related

to the accuracy and completeness with which users achieve their goals. efficiency is

defined as how well resources are applied to achieve these goals. Satisfaction is the need

to guarantee that customers are satisfied.

Based on this three categories, they defined an evaluation model that they employed to

evaluate and compare the quality of two different versions on the same chatbot, to verify

which of them is better. The evaluation model is the following:

The Efficiency: They specified five quality attributes that permits to measure a chatbot's

efficiency: Graceful degradation, Robustness to manipulation, Robustness to unexpected

input, Avoid inappropriate utterances and Effective function allocation

The Effectiveness: The effectiveness is divided into two sub-groups:

The functionality: It can be measured using quality attributes such as accurate speech

synthesis, accurate command interpretation, linguistic accuracy, overall ease-of-use, and

on-the-fly problem solving.

The humanity: It contains quality attributes such as passing (or failing) the Turing test,

being transparent to inspection, including error for increased realism, and answering

particular questions.

The user satisfaction: It is also divided into three categories:

The affect: It includes attributes like greetings and expressing personality, offering

conversational cues, providing emotional information, demonstrating warmth and

sincerity, making tasks more fun and engaging, and reading the mood.

The Ethics and behaviors: This attribute can be evaluated using the following quality

attributes: Respect, preservation of dignity, users’ ethics and cultural knowledge, privacy

protection and respect, non-deception, sensitivity to safety and social concerns,

trustworthiness, and awareness of trends and social context.

The accessibility: It includes quality attributes such as a response to social cues, intent

recognition, and response to diverse needs.

Background

41

 On Evaluating and Comparing Open Domain Dialog Systems

In their 2018 study, Venkatesh et al. [21] proposed six different metrics for evaluating the

open-domain conversational agents (socialbots) built for the Alexa Prize. They rejected

the Turing tests in their study because they did not believe that this was a suitable method

to evaluate chatbots, as AI chatbots may not behave as humans in some cases, but they

can lead a good conversation, and also because the primary objective is to evaluate the

conversational experience that a chatbot can provide without a human likely behavior.

The six metrics are the following:

The conversational user experience: They defined four elements based on user

experience to evaluate the conversational user experience. First, the user expectation,

which includes the chatbot's friendly presence and accuracy in responding to user input.

Second, the chatbot’s behavior and sentiments. third, there is security and trust. Finally,

the measurement of how effectively the chatbot manages the absence of Visual Cues and

Physicality.

The engagement: It measures the degree of interest in a conversation. In other words,

how engaged a user is in the conversation.

The coherence: It evaluates the chatbot's ability to understand user messages and provide

accurate answers.

The domain coverage: This metric measures the number of domain a chatbot can

perform. A domain-specific conversation agent may be more like goal-directed chats,

where the output answer space is constrained. An agent that can operate across multiple

domains is more likely to be consistent with human expectations.

The conversational depth: It computes the average number of consecutive turns on a

given thematic domain. It is critical to detect the context and depth of the discussions

while evaluating chatbots. Human conversations typically delve deeper into a specific

topic. An agent who can capture topical depth may seem more natural.

Topical diversity/conversational breadth: This metric evaluates a conversational

agent's capacity to detect topics and keywords from a given utterance, to have

conversations around the same topics and to share relevant concepts, and to recognize

appropriate user intent.

Background

42

 Evaluating and Informing the Design of Chatbots

Jain et al. [22] focused on an HCI human-computer interaction perspective in their study

published in 2018, to evaluate chatbots. To do this, they recruited a group of people with

no prior experience with chatbots and instructed them to interact with chatbots for three

days. During these three days, Jain et al. gathered the quantitative data listed below:

The total interaction time: It focuses on calculating how much time a user spends

interacting with chatbots.

The message count: It measures the total of messages exchanged between a participant

and the chatbot.

The interactive elements: It focuses on analyzing the amount of inerractive features

provided by the chatbot during the conversation, such as buttons.

At the end of the three days, they asked participants via interviews to answer certain

questions on their experience with the chatbots, from which they highlighted the most

important users’ comments regarding the chatbots. Based on these comments, they were

able to define the following attributes that permit to evaluate chatbots performance:

The functionality: This element focuses on how well the chatbot performed in

completing its primary task.

The conversational intelligence: It measures the chatbot's human-like interaction skills

as well as its accuracy in understanding user input.

The chatbot personality: It focuses on examining the personality traits of a chatbot.

According to Jain et al., participants preferred chatbots with distinct personalities. They

expected the chatbot's personality to be consistent with its domain.

The chatbot interface: This attribute evaluates the interface that participants used to

interact with the chatbots.

Background

43

 A Survey on Evaluation Methods for Chatbots

Maroengsit et al. [23] reviewed 30 publications representing chatbots from various areas

(such as e-commerce, health, and open-domain), 17 of which included evaluation

methods, in their paper published in 2019. They concentrated on evaluation

methodologies and came up with three key categories:

The Content Evaluation: It covers both automatic evaluation using text summarization

methods, or expert evaluation where humans are needed to perform what scripts cannot.

The User Satisfaction: This category focuses on methods that ask users about their

thought of their interaction with the chatbot. It is also divided into Turn Evaluation and

Session Evaluation based on whether users are asked about their interaction after each

question or only at the finish.

Functional evaluation: It includes other approaches such as task-based evaluation,

which is popular with goal-oriented chatbots, usage statistics, and evaluation as a building

block.

 Can we Improve the User Experience of Chatbots with Personalisation?

Duijst [24] developed an evaluation model to assess and compare several versions of the

same chatbot in her study published in 2017. The assessment approach was based on user

experience. After recruiting a group of users to test the functionality of the chatbot

versions, she utilized a combination of quantitative and qualitative research

methodologies to evaluate and compare the quality of the different chatbot versions from

user testing.

Quantitative data: Surveys were conducted to gather quantitative data. After testing the

chatbot's functioning, participants were invited to use a questionnaire to evaluate three

chatbot’s quality dimensions (usefulness, usability, and user satisfaction) by responding

to the list of items related to each dimension using Likert scales. Finally, the survey

responses were statistically analyzed in order to evaluate and compare the quality of

different chatbot versions.

Qualititative data: Observations and interviews were used to collect qualitative data.

During the testing of the chatbot's functionality, the participants were observed by the

Background

44

researcher, allowing the researcher to take notes on the users’ experiences. After testing

the chatbot's functionality, the researcher conducted a semi-structured interview with the

tester.

The evaluation Model

45

3. The evaluation Model

Almost all of the reviewed research that aims to evaluate and compare the performance

and quality of chatbots did not provide a general framework that can be applied to all type

of chatbots. However, they developed different evaluation approaches that concentrated

on quality dimensions related to their study and the type of chatbot they were examining.

Although these studies used different approaches to evaluate the performance of chatbots,

the majority of them defined the user experience perspective as an important chatbot

evaluation perspective. Because, chatbots are mainly used to communicate with humans.

This user experience perspective necessarily requires human testers to interact with the

chatbot. Then, multiple approaches are used to collect data from user testing in order to

evaluate the chatbot quality, such as the quantitative approach through surveys and

statistical analysis, the qualitative approach through interviews, or the combination

of both quantitative and qualitative methods.

Because most reviewed studies considered the user experience as an essential chatbot

evaluation perspective, we decided to develop a general evaluation model based on user

experience to assess and compare the quality of chatbots.

3.1. Evaluation model Overview

This evaluation model includes ten chatbots quality dimensions: Usefulness, Ease-of-use,

Efficiency, Effectiveness, User satisfaction, Personality and humanity, Responses in

unexpected situations, Response time, Security and privacy, and Visual appearance. It

requires first the use of human participants to test the functioning of the chatbot. Then, in

order to evaluate the quality of chatbots, a quantitative approach is used to collect data

from user testing by conducting a survey with these testers, in which they are asked to

evaluate each dimension via a questionnaire. In this questionnaire, a set of linked items

with a Likert scale from 1 to 5 (1-Strongly disagree, 2-Disagree, 3-Neutral, 4-Agree, and

5-Strongly agree) are used to assess the quality of every dimension.

The goal of this evaluation model is to help developers, researchers, and companies not

only to evaluate chatbots but also to compare different chatbots and different versions of

The evaluation Model

46

the same chatbot, allowing them to have a general overview about the quality of chatbots

they wish to evaluate or to compare.

 Evaluate the quality of chatbots

After the survey is done, statistical analysis must be applied on the survey findings to

calculate the overall average of the entire chatbot system as well as the overall average

for each dimension. The overall quality of the chatbot or the quality of each dimension is

considered very poor when the average is less than 2, poor when the average is between

2 and 3, satisfactory when the average value is between 3 and 4, and good when the

overall is more than 4.

 Comparing the quality of chatbots

To compare the quality of many versions of the same chatbot or different chatbots, our

evaluation model must be applied to each one of them with the same number of testers to

evaluate their performances. Then, the overall averages and dimension averages can be

compared between chatbots. T-test [25] or ANOVA test [26] must also be conducted to

measure whether the difference in averages between bots is significant or coincidental.

When the number of chatbots to compare and the number of groups to test each of them

is equal to two, the t-test is required. However, the ANOVA test is needed when the

number of chatbots to compare and the number of groups to test each of them is greater

than two.

The evaluation Model

47

3.2. Evaluation model dimensions

In this section, the dimensions of the evaluation model are described.

Figure 3.1: The dimensions of the evaluation model

 Usefulness

The technology acceptance model (TAM) [27] developed by Davis in 1985 is one of the

most well-known models of technology adoption. Perceived usefulness and perceived

ease-of-use are the two major factors that determine technology acceptance, according to

TAM. The extent to which a technology is considered to increase a potential user's

performance is referred to as perceived usefulness. The usefulness is one of the dimension

used by Duijst [24] to evaluate the quality of chatbots.

The TAM consists of ten items that can be used to measure a product's usefulness. To

evaluate the usefulness of chatbots, we adapted from TAM the two items that are the most

strongly related to our study.

Usefulness_1: Using this chatbot can help me complete tasks faster.

Usefulness_2: I find this chatbot useful.

The evaluation Model

48

 Ease-of-Use

According to TAM [27], perceived ease-of-use is one of the two primary factors that

affect technology acceptance. It is defined as the amount of effort necessary to effectively

use a technology usefulness. The ease-of-use is one of the quality attributes that was

defined by Radziwill and Benton [20] to evaluate chatbots.

TAM contains 10 items to measure a product's ease-of-use. We adapted the three items

that are the most strongly related to our study from TAM to evaluate the Ease-of-use of

chatbots.

Ease-of-Use_1: I find the chatbot easy to use.

Ease-of-Use_2: I find it easy to let the chatbot do what I want it to.

Ease-of-Use_3: Learning how to use the chatbot was easy for me.

 Effectiveness

Radziwill and Benton [20] defined the effectiveness of chatbots as the accuracy and

completeness with which users achieve their goals. We used the following items to

evaluate the effectiveness of a chatbot.

Effectivness_1: I felt that the chatbot understood all my intentions.

Effectivness_2: I was able to reach my goal thanks to the chatbot.

Effectivness_3: The chatbot understands exactly what I want and helped me to achieve

my objective.

 Efficiency

The efficiency refers to working as best as possible while wasting the least amount of

time and effort [20]. We created the following items to evaluate a chatbot's efficiency.

Efficiency _1: The chatbot only provides me the amount of information I need.

Efficiency _2: The amount of information exchanged between me and the chatbot was

adequate.

The evaluation Model

49

Efficiency _3: I reached my goal without too many exchanges.

 Visual appearance

The visual look of a chatbot is an important factor that affects the quality standard of its

implementation. Because, humans often judge a book by its cover [18].

We adapted the item used by Kuligowska [18] to evaluate the aesthetic look of a chatbot

due to the importance of this factor.

Visual_appearance_1: I liked The visual look of the chatbot.

 Responses in unexpected situations

According to Kuligowska [18], a chatbot should be able to respond to unexpected

situations intelligently, politely, and patiently. Typos, misspellings, colloquialisms, and

insults must all be recognized by a chatbot. It must also recognize the lack of information

on a specific question and try a variety of creative solutions to overcome the user's

ignorance.

The three first items used to measure chatbot responses in unexpected situations were

adapted from those used by Kuligowska [18] to evaluate the chatbot responses in

unexpected situations. We created the fourth item.

Responses in unexpected situations_1: The chatbot was able to recognize and overcome

the lack of information on a specific question.

Responses in unexpected situations_2: The chatbot was able to overcome typos and

misspellings.

Responses in unexpected situations_3: The chatbot was able to overcome insults and

humiliations.

Responses in unexpected situations_4: The chatbot handled well the interruptions during

the conversation.

The evaluation Model

50

 Personality and humanity

According to Kuligowska [18], chatbots must be equipped not only with expertise, but

also with the ability to express personality in order to become convincing in the eyes of

users. The personality and humanity also were both defined in the evaluation model

developed by Radziwill and Benton [20]. We developed three items to measure

personality and humanity. The first item was used by Kuligowska [18] to evaluate

personality in her research.

Personality and humanity_1: The chatbot has a very rich personality.

Personality and humanity_2: The chatbot was friendly.

Personality and humanity_3: I had the impression that I was chatting with a real person.

 Response time

The response time is the amount of time it takes for a system to respond to a request or

an interaction. In other words, the chatbot response time is the time that the chatbot takes

to respond to the user's inputs. The response time, or how quickly a chatbot responds, was

defined as an essential Information retrieval chatbot evaluation attribute in the research

created by Jadeja and Varia [19].

We created the following items to evaluate the response time:

Response time_1: The chatbot responds quickly.

Response time_2: The response time was acceptable.

 Security and privacy

According to Venkatesh et al. [21] and Jadeja and Varia [19] security is an important

chatbot quality attribute. Because, security is vital for users especially when the chatbot

is handling private or confidential data. Therefore, a higher level of trust can be built, if

users believe that the chatbot is secure. Radziwill and Benton [20] defined the protection

of privacy as an important quality attribute that can improve the user’s satisfaction.

We created these two items to evaluate the security and privacy.

Security and Privacy _1: This chatbot was able to maintain my privacy.

The evaluation Model

51

Security and Privacy _2: The interaction with the chatbot seemed secure.

 User satisfaction

Finally, the last dimension to evaluate in our evaluation model is the user’s satisfaction

or how the user feels about his experience with the chatbot. Most of the reviewed research

defined the user satisfaction as one of the most important attribute to evaluate chatbots.

We adapted three items from the elements used by Duijst [24] to measure user’s

satisfaction in the questionnaire she developed.

User satisfaction_1: This chatbot is fun to use.

User satisfaction_2: I am satisfied with this chatbot.

User satisfaction_3: I would recommend this chatbot to a friend.

The dimensions and items of the proposed model are listed in the table below:

Dimensions/Attributes Items

Usefulness

 Usefulness_1: Using this chatbot can.

help me complete tasks faster.

 Usefulness_2: I find this chatbot

useful.

Ease-of-use

 Ease-of-Use_1: I find the chatbot easy

to use.

 Ease-of-Use_2: I find it easy to let the

chatbot do what I want it to.

 Ease-of-Use_3: Learning how to use

the chatbot was easy for me.

Effectiveness

 Effectivness_1: I felt that the chatbot

understood all my intentions.

 Effectivness_2: I was able to reach my

goal thanks to the chatbot.

The evaluation Model

52

 Effectivness_3: The chatbot

understands exactly what I want and

helped me to achieve my objective.

Efficiency

 Efficiency _1: The chatbot only

provides me the amount of

information I need.

 Efficiency _2: The amount of

information exchanged between me

and the chatbot was adequate.

 Efficiency _3: I reached my goal

without too many exchanges.

Visual appearance
 Visual_appearance_1: I liked The

visual look of the chatbot.

Responses in unexpected situations

 Responses in unexpected situations_1:

The chatbot was able to recognize and

overcome the lack of information on a

specific question.

 Responses in unexpected situations_2:

The chatbot was able to overcome

typos and misspellings.

 Responses in unexpected situations_3:

The chatbot was able to overcome

insults and humiliations.

 Responses in unexpected situations_4:

The chatbot handled well the

interruptions during the conversation.

Personality and humanity

 Personality and humanity_1: The

chatbot has a very rich personality.

 Personality and humanity_2: The

chatbot was friendly.

The evaluation Model

53

 Personality and humanity_3: I had the

impression that I was chatting with a

real person.

Response time

 Response time_1: The chatbot

responds quickly.

 Response time_2: The response time

was acceptable.

Security and privacy

 Security and Privacy _1: This chatbot

was able to maintain my privacy.

 Security and Privacy_2: The

interaction with the chatbot seemed

secure.

User satisfaction

 User satisfaction_1: This chatbot is

fun to use.

 User satisfaction_2: I am satisfied

with this chatbot.

 User satisfaction_3: I would

recommend this chatbot to a friend.

Table 3.1: The items of the evaluation model

Implementation

54

4. Implementation

For our study, we developed a chatbot demo that allows flight company customers to

purchase flight tickets and manage their reservations. Then, we created two versions of

this chatbot to test if sentiment analysis can improve the chatbot quality. The first version

cannot analyze the user sentiment, whereas the second is an improved version that can

analyze the feelings and respond accordingly. Finally, we integrated these chatbots into

two similar web applications that we implemented so that human testers could interact

with both versions.

In this chapter, we will describe in details the implementation of the second version

because both versions are extremely similar in terms of architecture and functioning,

except that the first cannot analyze sentiment and respond accordingly, while the second

can.

4.1. General use case

Figure 4.1: General use case diagram

Implementation

55

4.2. System architecture

Figure 4.2: The system architecture

 Rasa framework

The Rasa framework was used to develop the chatbot demo. The following sections cover

all aspects of the demo's implementation.

4.2.1.1. NLU module

The NLU module is responsible for NLU prediction such as intents detection, entities

recognition and slots extraction. All these intents, entities and slots are defined in the

domain.yml file.

 Data structure:

The following are the most important Intents that we used in our implementation with the

required entities/slots that need to be extracted when detecting these intents. Other intents,

entities, and slots were also implemented, but they are not covered here for the sake of

brevity.

Implementation

56

Main Intents:

Intent Description

inform_Book

This intent indicates that the user wants to

be notified about potential flight

opportunities. When this intent is

recognized, the chatbot will provide all

the necessary details and suggest the user

book the flight if desired. If he confirms,

the chatbot gathers his personal and his

payment details in order to book this

flight for him.

modify_travel_date

This intent indicates that the user wants to

modify the travel date of a flight he has

already booked.

modify_return_date

This intent indicates that the user wants to

change the return date of a flight he has

already booked.

cancel _flight
It means that the user wants to cancel his

booking.

cancel_return _flight
It indicates that the user wants to cancel

the return flight only.

Make_claim

Make_claim: This intent indicates that the

user wishes to make a claim about

something.

Table 4.1: Main Intents

Implementation

57

Main Entities:

Entity Description

city

City is the entity responsible for the

extraction of the name of the city from

user input.

date
This entity is responsible for the extraction

of date from user messages.

sentiment
It is in charge of the extraction of user

sentiment from his sentences.

Table 4.2: Main entities

Main slots:

Slot Type Mapping(extracted

from)

Description

departure_city Text Entity: city

This slot stores the

departure city entered by

the user. It is filled when

the entity city is detected.

arrival_city Text Entity: city

It saves the departure city

sent by the user. It is filled

from the city entity.

travel_date Text Entity: date

It stores the user travel

date. It is filled when the

entity date is recognized.

return_date Text Entity: date

It saves the user-specified

return date. It is filled when

the entity date in the user

input is detected.

price Text Custom

This slot is automatically

filled with the flight cost

by a custom action after the

user has already selected

Implementation

58

the travel date and return

date.

passport_id Text From user text
It Is the slot that saves the

user passport Id.

full_name Text From user text It stores the user full name.

electronic_card_type Text From user text
It stores the user electronic

card type.

electronic_card_number Text From user text
This slot saves the user

electronic card number.

cvv_number Text From user text
It stores the user electronic

card CVV number.

expiration_date Text Entity: date

This slot stores the user

electronic card expiration

date. It is filled when the

entity date is recognized.

SMS Text From user text

This slot saves the secret

code of the SMS sent to the

electronic card owner in

order to secure the

payment.

ticket_id Text
Custom/ From user

text

 This slot is

automatically filled by a

custom action once the

user purchases a ticket.

 It is filled from user text

when the user wishes to

modify the travel date,

modify the return date,

cancel a flight , cancel

the return flight, or make

a claim.

Implementation

59

claim_subject Text From user text
It stores the subject of the

user's claim.

sentiment Text Entity: sentiment

This slot stores the user

sentiment. It is filled from

the entity sentiment.

Table 4.3: Main slots

 NLU components:

The NLU module is implemented as a pipeline that processes the input text in a series of

steps called components. Each component of the pipeline is run in turn, and the output of

each is available to the next. All pipeline steps are defined in the config.yml file.

The pipeline steps or components that we used in our implementation are defined in

config.yml file as shown in figure 4.3.

Figure 4.3: The pipeline steps

The first component,” sentiment analyzer”, is a Custom Graph Component, while the

others are predefined by Rasa. All of the components we used are described below.

Sentiment analyzer:

We had to create a new Custom Graph Component that allows the NLU components to

extract the user sentiment from his messages. Because, Rasa NLU does not provide a

predefined NLU component that allows to analyze user sentiment. For this reason, we

Implementation

60

first created a Python file called “sentiment.py”. In this file, we implemented a class

named “Sentimentanalyzer” that includes the Custom Component's code. This class

contains two primary methods: “process” and “covert_to_rasa”. The “process” analyzes

the user sentiment using the Vadersentiment sentiment analyzer included in the “NLTK”

library. This method returns a string that can be “neutral”, “negative”, or “positive”, as

shown in figure 4.4 and 4.5 below. The “convert_to_rasa” method, on the other hand,

indicates to the NLU module that the sentiment is extracted as an entity. Finally, we

referenced this Custom Component in the NLU pipeline of the config.yml file. As a result,

after the training process is complete, the NLU module will be trained to predict the user

sentiment based on his input and to extract this sentiment as an entity.

Figure 4.4: Neutral user sentiment

Figure 4.5: Negative user sentiment

Implementation

61

Figure 4.6: Discussion without sentiment

analyzer

Figure 4.7: Discussion with sentiment analyzer

As seen in Figure 4.6, a chatbot without a sentiment analyzer will ignore the user's

sentiment and continue with the process. On the other hand, if negative user sentiment is

detected at any point throughout the conversation utilizing the sentiment analyzer, as

illustrated in figure 4.7, the chatbot's answers will be more empathetic and the chatbot

will take a new path as seen in figure 4.8. In this new path, it asks the user if he is unhappy

about something. Then, it offers him a discount on booking or a discount code that can

be used in free duty shops to try to change his mood.

Implementation

62

Figure 4.8: Conversational user/bot flow for sentiment analysis

Predefined components:

The predefined NLU components that we used in our implementation are:

- WhitespaceTokenizer: We used the WhitespaceTokenizer component to create

a token for every whitespace separated character sequence from the user’s

sentence.

- LexicalSyntacticFeaturizer: We used this component to provide lexical and

syntactic features for a user’s message, in order to assist entity extraction.

- RegexFeaturizer: We used the RegexFeaturizer to create features for entity

extraction and intent classification.

- CountVectorsFeaturizer: It was used to create intent classification and response

selection features.

- DIETClassifier: We used the Dual Intent Entity Transformer (DIET) used for

intent classification and entity extraction.

Implementation

63

- EntitySynonymMapper: This component is used to ensure that identified entity

values are mapped to the same value if the training data contains defined

synonyms.

- Response Selector component: We utilized the Response Selector component

for the creation of the dictionary with the key representing the response selector's

retrieval intent and the value containing predicted responses, confidence, and the

response key.

- FallbackClassifier: We used the FallbackClassifier to Classify a message with

the intent nlu_fallback if the NLU intent classification scores are ambiguous. We

set the threshold to 0.6 which means if the confidence on an intent is less 0.6, the

chatbot will respond to the user that his message was unclear and that he needs to

rewrite his message in a clear manner.

4.2.1.2. Rasa Core

Rasa core is the part of Rasa that is in charge of predicting and executing the next action

based on the data retrieved by the Rasa NLU module. This action might be a simple

response, a custom action, or a form. The most important forms and custom actions that

we implemented are as follows:

 Forms:

A form contains a series of slots that represent the data that must be collected. Once

activated, it will keep requesting the user to fill in all required slots using the list of slot

utterances defined in the domain.yml until all are filled. Rasa forms are highly useful in

operations such as booking that need the gathering of a set of data from the user.

The most important forms that we implemented are described below in more details:

Form Description Main Required slots

inform_book_form

This form is in charge of

gathering the slots that need

to be filled during the

inform process and the

booking process. Because,

 departure_city

 arrival_city

 travel_date

 return_date

 price

Implementation

64

every user must be first

informed about the flights

opportunities, the total

price of the booking, and

the payment opportunities.

Then he will be asked if he

is still interested about the

offers and wants to book.

When he confirms, the

chatbot starts the booking

process and asks the user to

enter his personal data and

the data related to the

payment.

 Passport_id

 full_name

 electronic_card_type

 electronic_card_number

 cvv_number

 expiration_date

 SMS

modify_travel_date_form

This form is in responsible

of gathering the slots that

need to be filled during the

modification of the travel

date of an already booked

flight.

 travel_date

 ticket_id

modify_return_date_form

It is responsible for

collecting the slots that

need to be filled during the

modification of the return

date of an already booked

flight.

 return_date

 ticket_id

cancel_flight_form

This form gathers the slots

that need to be filled during

the cancel flight operation.

 ticket_id

cancel_return_flight_form
This form collects the slots

that need to be filled during

 ticket_id

Implementation

65

the cancel return flight

operation.

make_claim_form

It gathers the slots that need

to be filled during the claim

process.

 ticket_id

 claim_subject

Table 4.4: Main forms

 Custom actions:

Custom actions are required when the next action is more complex than a simple action.

All the custom actions are implemented in action.py file and they are executed by the

Action Server. This Action Server runs independent of the NLU module and the Rasa

core. It is called every time Rasa Core predicts a custom action to be executed.

The most important custom actions that we implemented are the following:

Custom action Description

validate_booking_form

This is the custom action that was implemented

to verify the values of all the required slots of

the “inform_book_form” before validating

them. If the value of the slot does not fit the

constraints set in this custom action, the user

will be asked to enter it again.

validate_modify_travel_date_form

It verifies all the required slots of the

“modify_travel_date_form” and validates them

only when they match certain constraints.

validate_

modify_return_date_form

It checks all the required slots of the

“modify_return_date_form” and validates

them only when they match certain constraints.

validate_ cancel_flight_form

It verifies all the required slots of the

“cancel_flight_form” and validates them only

when they match the constraints defined in this

custom action.

Implementation

66

validate_

cancel_return_flight_form

It checks all the required slots of the

“cancel_return_flight_form” and validates

them only when they match certain constraints.

validate_ claim_form

It checks all the required slots of the

“claim_form” and validates them only when

they match certain conditions specified in this

custom action.

submit_booking

This custom action is always executed once the

booking operation is finished. It eventually

generates the ticket Id, displays a booking

confirmation with all booking details, and

stores the booking in the database when the

booking is confirmed by the user.

submit_modify_travel_date

This custom action is performed once the travel

date modification process is over. It displays a

confirmation message, and stores the

modification in the database when the

modification is confirmed by the user.

submit_modify_return_date

This custom action is executed once the return

date modification operation is over. When the

modification is confirmed by the user, it shows

a confirmation message, and stores the

modification in the database.

submit_cancel_flight

It is executed after the cancel flight process is

over. Once confirmed by the user, it shows a

confirmation message, and removes the

booking from the database.

submit_cancel_return_flight

It is executed after the cancel return flight

operation is finished. Once confirmed by the

user, it shows a confirmation message,

modifies the booking to a one- way flight and

stores the modification in the database.

Implementation

67

submit_claim

This custom action is executed once the claim

operation is finished. When the claim is

confirmed by the user, it shows a confirmation

message, and stores the claim subject in the

database.

Table 4.5: Main custom actions

 Policies:

Figure 4.9: The policies

Rasa Core uses the concept of policies to specify how the next action is chosen.

We used mainly the the RulePolicy to predict the next action based on the rules provided

in training data. To handle cases when the policies cannot predict the next action with

high confidence, we set the core_fallback_threshold to 0.6, as shown in figure 4.9. In that

way, it sends a message to the user saying that his input was unclear and reverts back to

the state of the conversation before the user’s message that caused the fallback, when the

next action confidence is less than 0.6.

We used also the Transformer Embedding Dialogue (TED) Policy to predict next actions

and to recognize entities.

Implementation

68

4.2.1.3. Training data

The data provided in the training data is used to train the NLU module and the Rasa core.

 Rasa NLU Data:

To make NLU prediction, the chatbot must train The Rasa NLU module using NLU

training data. NLU training data consists of examples of user’s utterances categorized by

intent. This generally includes any entities contained in his message. The nlu.yml file, in

the data folder that Rasa creates, contains all of the NLU training data.

To train the NLU module to make NLU prediction, we defined in nlu.yml file all intents

that exists in the domain.yml with the possible user’s utterance related to these intents.

We defined also the possible entities that all these utterances could contain. Rasa uses a

proprietary format for training data based on Markdown. We trained the NLU module

using more than 1500 examples for different intents.

 Rasa Core data:

The Rasa Core can be trained to predict the next action using rules and stories. Rules

describe short pieces of conversations that should always follow the same path. It links a

user's intent to one or more actions. An action could be a simple response, a custom action

or a form. The Rules can recognize intents or actions (response, custom action or form)

only if they are defined in the domain.yml file. If the action used in a Rule is a form, the

chatbot will keep requesting the user to fill up all of the form's required slots. All

necessary rules must be defined in the Rasa rules.yml in the Data folder.

We used Rules to train our chatbot to predict the next actions. We utilized more than 150

rules that we defined in the rules.yml. We created rules that link all intents with all

possible actions related to these intents. We employed these rules to manage all possible

happy paths, user’s interruptions and NLU Fallbacks.

Implementation

69

4.2.1.4. Rasa HTTP API

After completing the implementation of the different modules of our demo and training

both the NLU module and Rasa Core using the training data, we ran the chatbot using the

command line “rasa run –enable api” to activate the Rasa HTTP API, allowing front end

clients to communicate with the chatbot through HTTP.

 Front end client

Figure 4.10: The user interface

The front end client uses the web browser to interact with the chatbot via HTTP. We

utilized the Python web framework Flask to develop the necessary web services and to

run the web server. This will allow users to interact with the chatbot via web browser

using a web page named “booking.html”. We inserted the package Rasa_Chatbot_UI 27

in booking.html. This package consists of CSS and JS files. It creates a chat user interface

and facilitates the interaction with a running Rasa server.

We executed Ngrok using the command line “Ngrok<port where our web application is

running>” to create an URL address that can be used by users to remotely access our web

application running on localhost to interact with the chatbot.

27 https://elysian01.github.io/Rasa-Chatbot-UI/

https://elysian01.github.io/Rasa-Chatbot-UI/

Implementation

70

 Database:

For our implementation, we created a SQLite database named “bookings”. It contains a

table named “Reservation” where all bookings are stored. Every line of this table contains

all the information related to a booking such as the ticket Id, the customer full name, the

passport Id, the electronic card type, the electronic card number, the departure city, the

arrival city, the travel date, the return date, and the claim subject.

4.3. Main tasks and conversational user/bot flow

This section contains the description of every process presented in the use case. For each

process, the main scenario and the corresponding conversational user/bot flow

are explained in details.

Implementation

71

 Inform

Figure 4.11: Conversational user/bot flow for Inform process

Implementation

72

Figure 4.12: Inform about a flight

Figure 4.13: Multiple information entered by

the user in a single message

The user may communicate with the chatbot to inform about potential flight possibilities,

as seen in figure 4.12. At that point, the form “inform_book_form” is launched to gather

all the information needed to fill the required slots related to the inform operation:

departure_city, arrival_city, travel_date, and return_date if he desires to fly back.

As shown in figure 4.13, if the user provides a lot of information regarding many slots in

a single sentence, the chatbot will fill these slots and then asks the user to enter data to

fill the remaining slots.

When the user enters the value of a required slot, the custom action

“validate_booking_form” is called to ensure that the value of that slot adheres to the

restrictions defined in this custom action:

It validates the departure and arrival cities entered by the user only if they are both

European capitals. The user may enter the travel and return dates in whatever format he

wants, such as "tomorrow" or "21.05.2022", etc. The methods responsible for the

validation of the travel and the return date in the custom action “validate_booking_form”

will convert them to the YYYY-MM-DD format using the Python “dateparser” package

before validating their values. Only travel dates from the current year and at least one day

after the current day are accepted. The return date is accepted only if it belongs to the

current year and at least one day after the trip date.

Implementation

73

Figure 4.14: Booking confirmation

Figure 4.15: Stop the process

When all of these slots are filled, the chatbot displays the cost of the booking, payment

options, and asks the user whether he wants to book that ticket and start the payment

process, as seen in figure 4.14. If the user confirms, the booking process starts to collect

user personal information and credit card details, and if he declines, the booking form is

deactivated and the entire process is stopped.

As shown in figure 4.15, the user can also stop the process at any moment he wants. He

can also modify all the data he previously entered, as seen in figure 4.16. If the user wants

to modify the value of a previously filled slot, the chatbot will ask him to enter the

data that allows him to fill that slot again instead of asking him to fill the next slot.

Figure 4.16: Modify data during the process

Figure 4.17: Bad sentiment detected during the

inform process

Implementation

74

As shown in figure 4.17, if negative user sentiment is detected at any point in the process,

the chatbot's responses will be more empathetic, and the chatbot will not ask the user to

provide the data required to fill the next slot, but will instead take a new path where it

asks the user if he is unhappy about something and offers him a discount on booking to

try to change his mood.

 Booking

Figure 4.18: Conversational user/bot flow for booking process

Implementation

75

Figure 4.19: Start of payment process

Figure 4.20: Payment and confirmation

When the user confirms that he wishes to purchase a plane ticket, the booking procedure

starts to gather the user's personal information and payment information, as shown in

figure 4.19. The “inform_book_form” will continue to ask the user to provide further

information to fill the remaining slots: full_name, passport_id, electronic_card_number,

cvv_number, expiration_date, and SMS. When a user enters the value related to a slot,

the custom action “validate_booking_form” is called to ensure that the value corresponds

to the constraints specified in this custom action.

The followings are the main steps of this process:

The procedure begins by requesting the user to provide his passport number in order to

fill the slot “passport_id”. The custom action “validate_booking_form” is executed, when

the user enters his passport number to check its value. The custom action validates the

slot value only when the user’s text contains a five-digit number. otherwise, he will need

to enter his passport number again.

Then, the user is asked to provide his name in order to fill the slot “full_name”. When the

user enters his name, the custom action “validate_booking_form” is executed. It extracts

the human name from a provided text using the Python “Spacy” package. If the user’s

text is too short, or if the name entered by the user doesn’t exists in the human names

dictionary of the Python “Spacy” package, the custom action will reject the slot value and

the chatbot will ask the user to enter the name again.

After that, the user is asked to enter his electronic card number to fill the slot

“electronic_card_id”. The custom action “validate_booking_form” is called, to check the

Implementation

76

text entered by the user. The custom action validates the slot value only when the user

text contains a twelve-digit number. Otherwise, he will need to enter his electronic card

number again.

Next, the user is asked to enter his electronic card cvv number in order to fill the slot

“cvv_number”. The custom action “validate_booking_form” is executed, to check the

data entered by the user. This custom action validates the slot value only when the user’s

input contains a three-digit number. otherwise, he will need to enter his cvv number again.

After the validation of the ccv number, the user is asked to enter the electronic card

expiration date in order to fill the slot “expiration_date”. The custom action

“validate_booking_form” is called, to check the date provided by the user. The expiration

date is only accepted if the date is at least one day after the current day. Otherwise, he

will need to enter the expiration date again.

Then, the chatbot asks the user to provide the secret code of the SMS sent to the electronic

card owner’s phone in order to fill the slot “SMS” and secure the payment. Since we

implemented a demo, the user needs only to provide a four-digit number to fill this slot.

Finally, a message that asks the user if he wants to confirm the payment is displayed.

When the user confirms the payment, the whole booking process is successfully finished.

When he refuses, a message that asks him if he is sure that he wants to stop the process

is displayed.

When the whole booking process is finished, the “inform_book_form” is deactivated and

the “submit_booking” custom action is executed. When the user has confirmed the

payment, this custom action generates a ticket Id (5-digit number), saves the booking in

the database and displays a booking confirmation message with all reservation details, as

shown in figure 4.20. When the process is stopped by the user, it displays to him a

message saying that the booking process is stopped.

Before the payment confirmation, the user can also stop the process at any stage he wants,

or modify all the data he previously entered. If the user wants to modify the value of a

previously filled slot, the chatbot will ask him to enter the data that allows him to fill that

slot again instead of asking him to fill the next slot.

Implementation

77

If negative user sentiment is detected at any point in the process, the chatbot's responses

will be more empathetic, and the chatbot will not ask the user to provide the data required

to fill the next slot. It will instead ask the user if he is upset about something and offers

him a discount on booking to try to change his mood.

 Cancel flight

Figure 4.21: Conversational user/bot flow for cancel flight

Implementation

78

Figure 4.22: Cancel flight

Figure 4.23: Cancel flight when a negative user

mood is detected

As seen in figure 4.22, users can cancel flights they have previously booked by simply

telling the chatbot that they wish to cancel their bookings. When the chatbot detects this

intention, it activates the form “cancel_flight_form” and asks the user to enter his ticket

Id in order to fill the required slot “ticket_id” of this form. The custom action

“validate_cancel_flight_form” is executed when the user provides the ticket Id. This

ticket Id entered by the user is validated by this custom action only if it exists in the

database. Finally, a message is displayed asking the user to confirm the ticket cancellation

with an affirm and decline buttons. When the user affirms, the operation is successfully

completed and when he declines the chatbot will ask him, if he wants to stop the process.

When the whole process is finished, the form “cancel_flight_form” is deactivated and the

custom action “submit_cancel_flight” is executed. When the user has confirmed the ticket

cancellation, this custom deletes the booking from the database, alerts the user that his

flight has been cancelled, and notifies him that he will be reimbursed in the coming days,

as shown in figure 4.22. When the process is stopped by the user, it displays him a

message saying that the process is stopped.

The user has the possibility to stop the process at any moment. If the chatbot recognizes

that the user is upset at any point during the process, its responses will be more

empathetic, and will take a new path where it asks the user if he is unhappy about

something and offers him a discount code for free duty shops to try to change his mood

and his decision about cancelling the flight, as seen in figure 4.23. The cancel flight

process cancels the whole reservation, including the return flight.

Implementation

79

 Cancel return flight

Users can also cancel return flights. This process is too similar to the cancel flight one.

But, it cancels the return flight only and not the whole reservation. Once this intent

detected, the chatbot activates the form “cancel_return_flight_form” to ask the user to

enter his ticket Id in order fill the required slot “ticket_id” of this form. The custom action

“validate_cancel_return_flight_form” is executed to validate the ticket Id entered by the

user.

When the whole process is completed, the custom action “submit_cancel_return_flight”

is executed. If the user has confirmed the return flight cancellation, this custom action

removes the return flight from the database, displays to the user that his return flight has

been cancelled. Also, it tells him that he will be refunded in the following days. If the

process is stopped by the user, the chatbot displays him a message saying that the process

is stopped.

The user has the possibility to stop the process at any moment. If negative user sentiment

is detected at any stage in the process, the chatbot's answers will be more empathetic, and

will take a new path where it asks the user if he is unhappy about something and offers

him a discount code for free duty shops to try to change his mood and his decision about

cancelling the return flight.

Implementation

80

 Modify travel date

Figure 4.24: Conversational user/bot flow for modify travel date process

Figure 4.25: Modify travel date

Figure 4.26: Modify travel date confirmation

Users can modify the travel date of a flight they have previously booked by simply telling

the chatbot that they wish to modify the travel date, as shown in figure 4.25. When this

user intention is detected by the chatbot, the “modify_travel_date_form” is activated to

ask the user to enter his ticket Id and the new date of travel in order fill the required slots

of this form: the “ticket_id” and “travel_date”. The custom action “validate_modify_

travel_date_form” is executed when the user provides the data to fills these two required

Implementation

81

slots. The ticket Id entered by the user is validated by this custom action only if it exists

in the database. The new date of travel entered by the user is only validated if it is from

the current year, at least one day after the current date, and at least one day before the

return date if the booking has already a return date. Finally, a message is displayed asking

the user to confirm the travel date modification procedure with an affirm and decline

buttons. When the user affirms, the operation is successfully completed and when he

declines the chatbot will ask him, if he wants to stop the process.

Once the whole process is completed, the “modify_travel_date _form” is deactivated and

the custom action “submit_modify_travel_date” is then called. When the user has

confirmed the travel date modification, this custom action updates the travel date of that

booking in the database and displays the user that his travel date has been modified, as

shown in figure 4.26. When the process is stopped by the user, it displays him a message

saying that the process is stopped.

The user has the possibility to stop the process at any moment. If negative user sentiment

is detected at any stage in the process, the chatbot's responses will be more empathetic,

and will take a new path where it asks the user if he is unhappy about something and

offers him a discount card for free duty shops to try to change his mood.

 Modify return date

Users can also modify return flights date. This process is too similar to the modify flight

one, but it modifies the return flight date. Once this intent is detected, the chatbot activates

the form “modify_return_date_form” to ask the user to enter his ticket Id and the new

return date in order to fill the required slots “ticket_id” and “return_date” of this form.

The custom action “validate_modify_return_date_form” is executed when the user enters

the data needed to fill these two required slots. The ticket Id entered by the user is

validated by this custom action only if it exists in the database and the booked flight has

a return flight. The new return date entered by the user is validated only if it is from the

current year, at least one day after the current date, and at least one day after the travel

date.

Once the whole process is completed, the custom action “submit_modify_return_date” is

executed. When the user has confirmed the return date modification, this custom action

Implementation

82

updates the return date of that booking in the database and displays to the user a message

to notify him that his return date has been modified. When the process is stopped by the

user, it displays him a message saying that the process is stopped.

The user has the possibility to stop the process at any moment. If the chatbot detects that

the user is upset at any point during the process, its responses will be more empathetic,

and it will take a new path where it asks the user if he is unhappy about something and

offers him a discount card for free duty shops to try to change his mood.

 Make claim

Figure 4.27: Conversational user/bot flow for the claim process

Implementation

83

Figure 4.28: Make a claim

Figure 4.29: Claim confirmation

The chatots allows users to make claims. As seen in figure 4.28, when the chatbot detects

that the user wants to make a claim, the “make_claim_form” is activated to ask the user

to enter his ticket Id and the subject of his claim in order to fill the required slots of this

form: the “ticket_id” and the “claim_subject”. The custom action “validate_claim_form”

is executed when the user enters the data needed to fill these two required slots. The ticket

Id entered by the user is validated by this custom action only if it exists in the database.

The claim’s subject entered by the user is validated only if it is not too short (more than

8 character). Finally, a message is shown asking the user to confirm the claim procedure

with an affirm and decline buttons. When the user affirms, the operation is successfully

completed and when he declines the chatbot will ask him, if he wants to stop the process.

Once the whole process is completed, the “make_claim _form” is deactivated and the

custom action “submit_claim” is executed. When the user has confirmed the claim, this

custom action stores the claim in the database and displays to the user a message saying

that his claim is sent, as shown in figure 4.29. When the process is stopped by the user, it

displays to him a message saying that the process is stopped.

The user has the possibility to stop the process at any moment. If negative user feeling is

detected at any stage of the process, in the same way as when modifying a travel date, the

chatbot's answers will be more empathetic, and will take a new path where it asks the user

if he is upset about something and offers him a discount card for free duty shops to try to

change his mood.

Research methodology

84

5. Research methodology

For our study, we conducted a survey with a set of participants. In this survey, participants

were instructed to test the chatbot functioning, then to respond to the questions of the

questionnaire. We divided these participants into two groups. The first group tested the

first version of our chatbot while the second tested the second version that can analyze

sentiment. During, the user testing, testers are instructed, to perform two tasks. The first

task is a simple task in which they will try to book a plane ticket and answer to the

question asked by the chatbot until the end of the process. The second task is complex

task in which testers are instructed to interrupt the conversation, enter complex sentences

and try to show their sentiments, when interacting with the chatbots. After completing

these tasks, they were instructed to respond to the questions of the questionnaire. This

questionnaire contains 27 questions. The first question is demographic that asks them if

they had a previous experience with chatbots. The other 26 questions represent the items

of every dimension of our evaluation model. Each tester used the Likert scale from 1”

Strongly disagree” to 5 “Strongly agree” to respond all the items of each dimension in

order to evaluate the quality of that dimension.

This survey at:

 First, measuring and analyzing the reliability and the validity of the items that we

created to evaluate each dimension of our evaluation model, which will permit to

evaluate the reliability and the validity of the entire evaluation model.

 Second, to determine whether sentiment can improve the chatbot overall quality

and to identify the improved quality dimensions. Therefore, two hypotheses were

formed:

- H1: Users consider that the overall quality of a chatbot that can analyze

sentiment is better than the overall quality of the same chatbot that does

not analyze sentiment.

- H2: If the overall quality of a chatbot has improved using sentiment

analysis, then the quality of all dimensions improves as well.

Research methodology

85

5.1. The reliability and validity

Reliability and validity are linked but distinct. Indicators (i.e. items) might be reliable but

not valid (i.e. accurate), and vice versa. The rate to which a group of two or more

indicators (i.e. items in a questionnaire) contribute to the measurement of a construct is

referred as reliability. In contrast, validity is a process that determines how well items

measure the construct they were supposed to evaluate [28].

In this study, we will analyze the items reliability and validity for each construct (i.e.

dimension in our study) we used in our evaluation model.

 Reliability

The Cronbach alpha coefficient is the most frequently used measurement tool to assess a

construct's reliability. In some researches, a Cronbach alpha coefficient more than 0.70

and less than 0.90 is recommended to confirm that the items used are reliable. Whereas

in others, a Cronbach alpha coefficient greater than 0.7 and less than 0.95 is

recommended. A Cronbach alpha less than 0.70 indicates that the items do not capture

the construct that they were designed to assess, whereas a Cronbach alpha that is more

than 0.95 indicates that the items of the construct are highly reliable, implying

considerable redundancy and one or some of them should be deleted [29].

In this study, we will calculate the Cronbach alpha coefficient for each dimension to

analyze the related items reliability.

 Construct validity

Construct validity is composed of two distinct but related measures: convergent validity

and discriminant validity. Both are required to evaluate the construct validity. However,

neither is adequate by itself to demonstrate construct validity [28].

5.1.2.1. Convergent validity

 The degree to which a measure correlates highly with other measures designed to assess

the same construct is referred to as convergent validity [28]. The primary measurements

used to measure convergence validity are Composite Reliability (CR) and Average

Research methodology

86

Variance Extracted (AVE). For each construct a Composite Reliability (CR) higher than

0.7 is recommended while an Average Variance Extracted (AVE) greater than 0.5 is

recommended [30].

In this study, we will compute the Composite Reliability (CR) and Average Variance

Extracted (AVE) for each quality dimension to analyze the convergent validity of the

related items.

5.1.2.2. Discriminant validity

Discriminant validity is demonstrated when each measurement item is weakly correlated

with all other dimensions except the one with which the item is associated [31].

Heterotrait-Monotrait ratio(HTMT) is one of most frequently used measure to assess the

discriminant validity. If the HTMT values of all constructs is less than 0.9, the

discriminant validity is proven [30].

In our study, we will compute the HTMT score for every quality dimension to assess the

discriminant validity.

5.2. Chatbot quality improvement with sentiment analysis

In order to test the two previously set hypotheses, we will measure and compare between

the two groups: The overall averages, the averages of each dimension, and the means and

standard deviations of each item. However, being based on averages only does not allow

us to confirm that one of the versions is better than the other, since the difference between

averages could be insignificant and happen by chance. For this reason, we will use the t-

test [25] to identify whether the difference of means between both groups is statistically

significant to test our hypothesis.

A t-test is a statistical method to compare the means between two groups. It aims at

determining if the difference in the means between these groups is significant or

coincidental. The t-test generates a probability value known as the p-value. If the p-value

is less than 0.05, it indicates that the difference in means is significant and did not occur

by chance [25].

Research methodology

87

5.3. Data collection

The survey was created with the online tool “Google Forms”. It was accessible online

from "01.05.2020" until "01.06.2020." The survey was posted in two Facebook groups.

Both groups consist of computer science students, professors, developers, and

researchers. In addition, a group of my acquaintances from various fields participated in

the survey. During the first 15 days of the survey, participants tested the functioning of

the first chatbot version before being allowed to reply to the questions of the

questionnaire. During the survey's remaining time, participants assessed the functioning

of the second chatbot version and then answered the questions of the questionnaire.

Survey results

88

6. Survey results

This thesis's results chapter will deal with a quantitative research design. In this chapter,

we present several statistical analyses of the data collected from our online survey.

A total of 54 participants participated in the survey. 20 of them answered yes to the

question “have you chatted with a chatbot before”. The participants were divided into 2

groups. The first group consists of 27 participants who interacted with our chatbot's first

version, whereas the second group consists of 27 participants who interacted with our

chatbot's second version that can analyze sentiment.

First, based on all the responses of the 54 participants, the reliability and validity of the

items used in our evaluation model to evaluate each dimension are analyzed to examine

how effective these items are. Finally, we will measure the means obtained from both

groups and investigate if the differences in means are statistically significant in order to

test our hypotheses.

6.1. Reliability and validity

In order to measure the reliability and validity of the items used to evaluate each

dimensions, we use the smartPLS tool.

 Reliability

We used Cronbach Alpha to verify the reliability of the items used in our evaluation

model to evaluate each dimension. A Cronbach Alpha coefficient between 0.7 and 0.95

is required for each construct or dimension to demonstrate items reliability. All

dimensions, as shown in Table 6.1, have a Cronbach Alpha coefficient between 0.7 and

0.95, which is satisfactory and indicates that the items employed in each dimension are

reliable.

The Cronbach Alpha is not computed to measure the reliability of the visual appearance

dimension. Since, it consists of a single item and reliability can only be performed on two

or more items. Furthermore, a single item is considered as very reliable according to Rost

et al. [32].

Survey results

89

Dimensions Cronbach Alpha
Composite

Reliability(CR)

Average Variance

Extracted(AVE)

Usefulness 0832 0.922 0.855

Ease-of-use 0.800 0.874 0.706

Effectiveness 0.840 0.900 0.750

Efficiency 0.817 0.878 0.709

Responses in

unexpected

situations

0.827 0.862 0.615

Personality and

humanity
0.894 0.920 0.794

Response time 0.825 0.917 0.847

Security and

privacy
0.731 0.881 0.787

User satisfaction 0.916 0.947 0.856

Table 6.1: Cronbach Alpha, Composite Reliability, Average Variance Extracted

 Validity

It is composed of two related measures the convergent and discriminant validity. These

two methods are required to demonstrate the validity of each dimension.

6.1.2.1. Convergent validity

We used both Composite Reliability (CR) and the Average Variance Extracted(AVE) to

analyze the convergent validity of the items used in our evaluation model to evaluate each

dimension. To demonstrate items convergent validity, each construct or dimension must

have a Composite Reliability score higher than 0.7 and an Average Variance Extracted

coefficient greater than 0.50. As shown in Table 6.1, all dimensions have a Composite

Reliability score higher than 0.7 and an Average Variance Extracted coefficient greater

than 0.50, indicating that the convergent validity of the items used in each dimension is

proven. The Composite Reliability and Average Variance Extracted are not computed for

Survey results

90

the visual appearance dimension. Since, it contains only one item and convergent validity

can only be performed on two or more items. Moreover, a single item can be considered

as highly valid according to Rost et al. [32].

6.1.2.2. Discriminant validity

We used the Heterotrait-Monotrait ratio(HTMT) to demonstrate the discriminant validity

of the items used to evaluate each dimension. A HTMT values less than 0.90 for all

dimensions is required to demonstrate discriminant validity. As shown in Table 6.2, all

of the HTMT ratios are less than 0.80, indicating that each measurement item is weakly

correlated with all other dimensions except the one with which the item is associated and

that the discriminant validity is established for all dimensions.

 Usefulness Ease-of-use Effectiveness Efficiency
Visual

appearance

Responses in

unexpected

situations

Personality

and

humanity

Response

time

Security and

privacy

User

satisfaction

Usefulness

Ease-of-use 0.548

Effectiveness 0.462 0.474

Efficiency 0.646 0.627 0.512

Visual

appearance 0.400 0.335 0.334 0.390

Responses in

unexpected

situations
0.503 0.470 0.430 0.641 0.399

Personality

and

humanity
0.168 0.314 0.107 0.282 0.074 0.493

Response

time 0.153 0.317 0.488 0.262 0.253 0.205 0.101

Security and

privacy 0.273 0.323 0.231 0.320 0.433 0.277 0.221 0.399

User

satisfaction 0.513 0.360 0.423 0.561 0.284 0.693 0.733 0.173 0.394

Table 6.2: HTMT ratios of all dimensions

Survey results

91

6.2. Chatbot quality improvement with sentiment analysis

We used the MS-Excel tool to measure for each group: the overall average, averages of

each dimensions, the means and standard deviations of each items. Also, MS-Excel was

used in order to perform the t-test to compare the averages between the two groups.

Dimensions Items Mean Std dev Average

Usefulness
Usefulness_1 3.51 0.64

3.53
Usefulness_2 3.55 0.57

Ease-of-use

Ease-of-Use_1 3.66 0.55

3.53 Ease-of-Use_2 3.29 0.66

Ease-of-Use_3 3.62 0.56

Effectiveness

Effectivness_1 3.18 0.73

3.46 Effectivness_2 3.62 0.56

Effectivness_3 3.59 0.69

Efficiency

Efficiency _1 3.37 0.62

3.48 Efficiency _2 3.37 0.62

Efficiency _3 3.70 0.60

Visual

appearance
Visual_appearance_1 3.18 0.68 3.18

Responses in

unexpected

situations

Responses in

unexpected situations_1
3.33 0.55

3.13

Responses in

unexpected situations_2
3.00 0.62

Responses in

unexpected situations_3
2.77 0.80

Responses in

unexpected situations_4
3.40 0.74

Personality

and

humanity

Personality and

humanity_1
1.59 0.57

1.69
Personality and

humanity_2
2.14 0.71

Survey results

92

Personality and

humanity_3
1.33 0.48

Response

time

Response time_1 3.07 0.61

3.20
Response time_2 3.33 0.62

Security and

privacy

Security and Privacy _1 3.18 0.62
3.38

Security and Privacy _2 3.59 0.57

User

satisfaction

User satisfaction_1 2.85 0.53

2.71 User satisfaction_2 2.70 0.60

User satisfaction_3 2.59 0.79

Overall average = 3.13

Table 6.3: Survey Results of the first group

As shown in Table 6.3, the overall average of the first group is 3.13 from a maximum

value of 5, which is a satisfactory rate. The overall averages of all dimensions, except

personality and humanity, and user satisfaction, are greater than 3.00, which could also

be considered satisfactory. On the other hand, the average of the dimension personality

and humanity is 1.69, which is considered as a very poor score, while the average of the

dimension customer satisfaction is 2.71, which is considered a poor score.

Dimensions Items Mean Std dev Average

Usefulness
Usefulness_1 3.37 0.92

3.48
Usefulness_2 3.59 0.88

Ease-of-use

Ease-of-Use_1 3.70 0.54

3.60 Ease-of-Use_2 3.37 0.56

Ease-of-Use_3 3.74 0.65

Effectiveness

Effectivness_1 3.07 0.78

3.40 Effectivness_2 3.77 0.93

Effectivness_3 3.37 0.74

Efficiency

Efficiency _1 3.44 0.64

3.54 Efficiency _2 3.44 0.75

Efficiency _3 3.74 0.71

Survey results

93

Visual

appearance
Visual_appearance_1 3.14 0.90 3.14

Responses in

unexpected

situations

Responses in

unexpected situations_1
3.51 0.64

3.42

Responses in

unexpected situations_2
2.85 0.71

Responses in

unexpected situations_3
3.33 0.73

Responses in

unexpected situations_4
4.00 0.78

Personality

and

humanity

Personality and

humanity_1
3.70 1.03

3.54
Personality and

humanity_2
3.88 0.84

Personality and

humanity_3
3.03 0.97

Response

time

Response time_1 2.96 0.58

3.14
Response time_2 3.33 0.62

Security and

privacy

Security and Privacy _1 3.22 0.50
3.42

Security and Privacy _2 3.62 0.74

User

satisfaction

User satisfaction_1 3.48 0.80

3.59 User satisfaction_2 3.59 0.84

User satisfaction_3 3.70 1.13

Overall average = 3.43

Table 6.4: Survey Results of the second group

As shown in Table 6.4, the overall average of the second group is 3.43 from a maximum

value of 5, which is a satisfactory rate. The total averages of all dimensions are greater

than 3.00, which could also be considered satisfactory.

The total averages of the survey results of both groups are shown in Table 6.5. The overall

average of the second group that tested the chatbot with sentiment analysis is 3.43, which

Survey results

94

is greater than the overall average of the first group that tested the chatbot without

sentiment analysis, which is 3.13. The t-test was also performed to determine whether

there was a significant difference in averages between groups. The resulting p-value is

0.014, which is less than 0.05, indicating that there is a significant difference in overall

averages between the two groups.

First group overall

average

Second group overall

average

P-value

(unpaired)

3.13 3.43 0.014

Table 6.5: The P-value of the unpaired t-test of overall averages between the two groups

The survey results averages per dimension for both groups are shown in Table 6.6. The

t-test was also performed on each dimension's averages to verify whether there was any

significant difference in the dimensions' averages between the two groups.

The overall averages in the majority of dimensions of both groups are almost equal, and

the resulting p-value for each dimension was much higher than 0.05, indicating that there

is an insignificant difference between the two groups in the majority of dimensions'

averages (Usefulness, Ease-of-use, Effectiveness, Efficiency, Visual appearance,

Response time, and Security and privacy).

On the other hand, the overall average of the Responses in unexpected situations in the

second group is 3.42, which is greater than the average of this dimension in the first group,

which is 3.13. The resulting p-value is 0.063, which is close to but still more than 0.05.

As a result, we cannot confirm that the difference in mean values on this dimension

between the two groups is significant since 0.063 is greater than 0.05, implying that there

is no significant difference. Furthermore, the overall average of the personality and

humanity dimension in the second group is 3.54, which is much greater than the average

of this dimension in the first group, which is 1.69. The resulting p-value is 1.594x10-12,

which is less than 0.05. As a result, we can confirm that the difference in mean values on

this dimension between the two groups is statistically significant. Finally, the overall

average of the dimension User satisfaction in the second group is 3.59, which is much

greater than the average of this dimension in the first group, which is 2.71. The obtained

p-value is 5 x10-4, which is less than 0.05. As a result, we can confirm that the difference

in mean values on this dimension between the two groups is statistically significant.

Survey results

95

Dimensions
First group

average

Second group

average

P- value

(Unpaired)

Usefulness 3.53 3.48 0.847

Ease-of-use 3.53 3.60 0.661

Effectiveness 3.46 3.40 0.580

Efficiency 3.48 3.54 0.662

Visual appearance 3.18 3.14 0.866

Responses in unexpected

situations
3.13 3.42 0.063

Personality and humanity 1.69 3.54 1.594x10-12

Response time 3.20 3.14 0.718

Security and privacy 3.38 3.42 0.804

User satisfaction 2.71 3.59 5 x10-4

Table 6.6: : The P-value of the unpaired t-test of overall averages per dimension between both

groups

Hypotheses testing:

Hypotheses Support

H1: Users consider that the overall quality of a chatbot that can analyze

sentiment is better than the overall quality of the same chatbot that does not

analyze sentiment

Yes

H2: If the overall quality of a chatbot has improved using sentiment

analysis, then the quality of all dimensions improves as well
No

Table 6.7: Hypotheses and results

The first hypothesis could be accepted for two main factors. First, the overall average of

the first chatbot version is equal to 3.43 and higher than the overall average of the second

version, which is equal to 3.13. Second, the p-value of the t-test that measures the

difference in overall averages between the two chatbot versions is equal to 0.014 which

is less than 0.05, indicating a significant difference between the two overall averages.

Survey results

96

The second hypothesis could not be accepted since the resulting p-value in the majority

of dimensions between the two chatbot versions was higher than 0.05, indicating an

insignificant difference between the two versions in the majority of dimensions' averages.

Furthermore, Only the overall averages of the dimensions User satisfaction, and

Personality and Humanity are increased in the second chatbot version with a resulting p-

values less than 0.05, indicating a significant difference.

Discussion

97

7. Discussion

This chapter comprises of what can be observed from the survey findings and a

comparison of these results with previous studies in order to answer our research

questions.

The goal of this study was to first develop and evaluate a general assessment model with

ten quality dimensions (Usefulness, Ease-of-use, Effectiveness, Efficiency, Visual

appearance, Responses in unexpected situations, Personality and humanity, Response

time, Security and privacy, Response time, and User satisfaction) to evaluate the quality

of chatbots and compare the quality of different versions or types of chatbots. The second

goal of this study was to implement two versions of the same chatbot (a first version

without sentiment analysis and a second improved version that can analyze emotions and

respond accordingly) and evaluate and compare their performances using the evaluation

model we developed in order to demonstrate whether sentiment analysis can improve the

overall quality of the chatbot, and if so to identify the quality dimensions that were

enhanced with sentiment analysis.

We created the following research questions to guide us during our study:

RQ1: What are the quality dimensions that can be used to evaluate chatbots?

RQ2: Can sentiment analysis improve the quality of a chatbot?

We also set the following hypotheses to assist us in answering our second research

question:

- Users consider that the overall quality of a chatbot that can analyze sentiment is

better than the overall quality of the same chatbot that does not analyze sentiment.

- If the overall quality of a chatbot has improved using sentiment analysis, then the

quality of all dimensions improves as well.

Discussion

98

7.1. Chatbot evaluation

In this section, we will discuss the previous chapter's findings in order to answer our first

research question.

As shown in Table 6.1, the results show that the Cronbach Alpha coefficient of each

dimension was between 0.70 and 0.91(a Cronbach Alpha score between 0.70 and 0.95 is

required, indicating that every set of items used to evaluate each dimension was reliable.

The results also reveal that the composite reliability (CR) of each dimension was greater

than 0.70 (A CR score greater than 0.70 is required) and the Average Variance Extracted

(AVE) score of each dimension was greater than 0.5 (An AVE score greater than 0.5 is

required), as shown in Table 6.1. Thus, the convergent validity of the items used to

evaluate each dimension is demonstrated. As seen in Table 6.2, the Heterotrait-Monotrait

ratio (HTMT) ratios of all dimensions were less than 0.70 (HTMT ratios less than 0.90

are recommended for each dimension), indicating that each measurement item is weakly

correlated with all other dimensions except the one with which the item is associated, and

demonstrating the discriminant validity of the items used to evaluate each dimension.

Because both convergent and discriminant validity were proven, the validity of the items

used to assess each dimension is confirmed, which indicates that all the items used in our

evaluation model to evaluate the quality of chatbots are valid and reliable.

Our findings are the same as Lin et al. [30] that demonstrated the reliability and validity

of the items employed to assess each construct.

7.2. Chatbot improvement with sentiment analysis

In this section, we will discuss the results of the previous chapter in order to respond to

our second research question.

 Chatbot overall quality improvement

Our results indicated that the first hypothesis we tested, “Users consider that the overall

quality of a chatbot that can analyze sentiment is better than the overall quality of the

same chatbot that does not analyze sentiment”, could be accepted. Because the second

chatbot's overall average (3.43) was greater than the first version's overall average (3.13),

Discussion

99

the resulting p-value was equal to 0.014 < 0.05, indicating a significant difference in the

overall averages between the two versions. Our findings support the theory that sentiment

analysis improves the chatbot’s quality when compared to the same chatbot without

emotion analysis, which is consistent with the previous studies conducted by Almansor

et al. [33], by Abedin et al. [34], and by Sutoyo et al. [35].

 Dimensions improvement

Our findings showed that the second hypothesis we tested, “If the overall quality of a

chatbot has improved using sentiment analysis, then the quality of all dimensions

improves as well”, could not be accepted. Because, the results showed that the majority

of dimension averages were almost similar between the two chatbots, and the resulting p-

value of each dimension between the two chatbot versions was greater than 0.05,

suggesting an insignificant difference. Furthermore, the results indicate that the overall

average of the dimension Responses in unexpected situations of the second chatbot

version (average equal to 3.42) was greater than the overall average of this dimension in

the first version (average equal to 3.13). However, the p-value of this dimension between

the two versions was equal to 0.06, which is close to 0.05 but still greater. As a result, our

findings cannot confirm that the second version handled unexpected situations better than

the first, and that this dimension is enhanced in the second version.

The overall average of the dimension Personality and humanity, on the other hand, has

increased from 1.69 to 3.54 in the second version, with a resulting p-value equal to

1.594x10-12<0.05, indicating a significant difference in averages between the two chatbot

versions. Furthermore, the average of the dimension User satisfaction increased from 2.71

to 3.59, with a p-value of 5 x10-4<0.05, indicating a significant difference in

averages between the two chatbots. As a result, our data demonstrated that the Personality

and humanity, as well as the User satisfaction dimensions, have improved in the second

version.

Our results showed that sentiment analysis did not increase the quality of the following

quality dimensions: Usefulness, Ease-of-use, Effectiveness, Efficiency, Visual

appearance, Responses in unexpected situations, Response time, and Security and

privacy. These findings demonstrated that sentiment analysis increased just two

dimensions: Personality and humanity and User satisfaction. These results are consistent

Discussion

100

with the findings of Sutoyo et al. [35] who proved that sentiment analysis can improve

chatbots' Personality and humanity, and increase the user’s delight. However, our findings

contradict the findings of Almansor et al. [33] which revealed that a chatbot that can

analyze emotions handled responses in unexpected situations better than the same

chatbot that cannot analyze sentiment. The difference between our findings and those of

Almansor E et al. could be due to the difference in the evaluation methodologies. They

used an automated evaluation technique that did not require human testers to evaluate and

compare the chatbot without sentiment and the chatbot with sentiment, whereas the

evaluation model we used was based on human testers. Furthermore, employing a larger

sample of testers could help us to confirm whether sentiment analysis can improve the

chatbot's ability to handle unexpected situations.

Furthermore, our findings contradict the findings of Abedin et al. [34] who proved that

sentiment analysis enhanced the chatbot accuracy of understanding the user’s intentions

(i.e. The effectiveness in our evaluation model) when compared to the same chatbot that

cannot detect sentiments. This difference in findings between our study and theirs may

be due to the fact that they trained a model to predict the user’s sentiment based on

his input. Then, they trained another model to predict the user’s intent based on the

predicted sentiment. On the other hand, we trained a single model that predict both the

user’s intent and sentiment.

To summarize, our findings showed that sentiment analysis increased the overall quality

of a chatbot, when compared to the same chatbot without sentiment analysis.

Furthermore, sentiment analysis improved the Humanity and personality of the chatbot,

and the User satisfaction. However, sentiment analysis did not improve the majority of

dimensions such as the accuracy of understanding the user’s intents.

Conclusion and outlook

101

8. Conclusion and outlook

This chapter will conclude the study by summarizing the important research results in

connection to the research goals. It will also review the study's limitations and

propose recommendations for future research.

In this thesis, we developed a general evaluation model based on user’s experience to

evaluate and compare the quality of chatbots by examining 10 chatbot dimensions. This

strategy necessitates human testers interacting with the chatbot. Following that, the data

from user testing is gathered quantitatively using surveys.

In this study, we also implemented two chatbot versions using the Rasa framework (one

that cannot understand sentiments and one that can analyze sentiment and respond

accordingly) and evaluated and compared them using our evaluation model to investigate

whether sentiment analysis can improve chatbot quality and to identify the

dimensions improved by sentiment analysis.

Our findings indicated that the items used in the evaluation model to evaluate the quality

of chatbots, were valid and reliable. Furthermore, the results of the comparison between

the two chatbot versions using the evaluation model showed that sentiment analysis

increased the chatbot's quality. However, it did not increase the majority of dimensions

such as effectiveness (i.e. the accuracy of understanding user intention) and improved

only two dimensions: The Personality and humanity, and user satisfaction.

In this thesis, the chatbots general evaluation model that we developed might be a useful

tool for developers, researchers and companies to have a general overview of the quality

of chatbots they wish to evaluate or to compare, which can address the gaps of most of

existing studies that have not presented a general evaluation framework to evaluate

chatbots.

8.1. Limitations

Our results demonstrate that the questionnaire utilized by our evaluation model is valid

and reliable, and that sentiment analysis improves chatbots quality when compared to the

same version without sentiment analysis. This study, however, has some limitations:

Conclusion and outlook

102

First, due to time constraints, the data was collected from a relatively small sample, which

means that we cannot generalize our findings to the entire population. To provide more

conclusive results, a larger sample should be used.

Also, our evaluation model only includes a quantitative method to evaluate chatbots,

which is based on statistical analysis, and does not include a qualitative approach, such

as interviewing human testers, which can be more revealing since testers may have

comments about some points concerning the quality of the chatbot.

8.2. Future Research

For future study, we propose using a large sample of human testers to increase the

accuracy of the findings, and to be able to generalize the results to the broad population.

Furthermore, we recommend that our evaluation model include a qualitative approach

that interviews testers about the quality of chatbots. As a result, the assessment model

will include both quantitative and qualitative approaches, which may improve its

efficiency to evaluate the performance of chatbots.

References

103

References

1. Suket, A., Kamaljeet, B. & Sarabjit, S. (2013). Dialogue System: A Brief Review.

arXiv. https://doi.org/10.48550/arXiv.1306.4134

2. Weizenbaum, J. (1966). ELIZA—a computer program for the study of natural language

communication between man and machine. Communications of the ACM, 9(1), 36–45.

https://doi.org/10.1145/365153.365168

3. Ashfaq, M., Jiang, Y., Shubin, Yu. & Loureiro S. (2020). I, Chatbot: Modeling the

determinants of users’ satisfaction and continuance intention of AI-powered service

agents. Telematics and Informatics, 54. https://doi.org/10.1016/j.tele.2020.101473

4. Casas, J., Tricot, M., Abou Khaled, O., Mugellini, E., & Mauroux, P. (2020). Trends

& Methods in Chatbot Evaluation. ICMI '20 Companion: Companion Publication of the

2020 International Conference on Multimodal Interaction, 280-286.

https://doi.org/10.1145/3395035.3425319

5. Hao, S., & Hao, G. (2020). A Research on Online Grammar Checker System Based on

Neural Network Model. Journal of Physics: Conference Series, 1651.

https://doi.org/10.1088/1742-6596/1651/1/012135

6. Loiacono, E., & Watson, R. (1999). WebQual: A Web quality instrument. AMCIS

1999 Proceedings,349. https://aisel.aisnet.org/amcis1999/349

7. Canonico, M., & Russis, L.D. (2018). A Comparison and Critique of Natural Language

Understanding Tools.

8. Vinkler, M. L. (2020). Conversational Chatbots with Memory-based Question and

Answer Generation [Master’s thesis, Linköping University]. https://www.diva-

portal.org/smash/get/diva2:1510358/FULLTEXT01.pdf

9. Kulatska, I. (2019). ArgueBot: Enabling debates through a hybrid retrieval-generation-

based chatbot [Master’s thesis, University of Twente].

https://essay.utwente.nl/79791/1/kulatska_MA_eemcs.pdf

10. Jurafsky, D., & Martin, J.H. (2021). Chatbots & Dialogue Systems. Speech and

Language Processing, 12-18

https://arxiv.org/search/cs?searchtype=author&query=Arora%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Batra%2C+K
https://arxiv.org/search/cs?searchtype=author&query=Singh%2C+S
https://doi.org/10.48550/arXiv.1306.4134
https://dl.acm.org/toc/cacm/1966/9/1
https://dl.acm.org/toc/cacm/1966/9/1
https://dl.acm.org/toc/cacm/1966/9/1
https://doi.org/10.1145/365153.365168
https://www.sciencedirect.com/science/article/abs/pii/S0736585320301325?via%3Dihub#!
https://www.sciencedirect.com/science/article/abs/pii/S0736585320301325?via%3Dihub#!
https://www.sciencedirect.com/science/article/abs/pii/S0736585320301325?via%3Dihub#!
https://www.sciencedirect.com/science/article/abs/pii/S0736585320301325?via%3Dihub#!
https://doi.org/10.1016/j.tele.2020.101473
https://dl.acm.org/doi/proceedings/10.1145/3395035
https://dl.acm.org/doi/proceedings/10.1145/3395035
https://aisel.aisnet.org/amcis1999/349
https://www.diva-portal.org/smash/get/diva2:1510358/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1510358/FULLTEXT01.pdf
https://essay.utwente.nl/79791/1/kulatska_MA_eemcs.pdf
http://web.stanford.edu/people/jurafsky/
http://www.cs.colorado.edu/~martin/

References

104

11.Ahmed, S. (2019). An Architecture for Dynamic Conversational Agents for Citizen

Participation and Ideation [Master’s thesis, Technical University of Munich].

12. Härkönen, A.P. (2021). Computationally clarifying user intent for improved question

answering [Master’s thesis, Tampere university].

https://aaltodoc.aalto.fi/bitstream/handle/123456789/112845/master_H%C3%A4rk%C3

%B6nen_Ari-Pekka_2022.pdf

13. Pavel, I. (2021). COMPARING CHATBOT FRAMEWORKS: A STUDY OF RASA

AND BOTKIT [Master’s thesis, Aalto university].

https://trepo.tuni.fi/bitstream/handle/10024/132928/PavelImran.pdf

14. Mamatha, M., & Sudha, C. (2021). Chatbot for E-Commerce Assistance: based on

RASA. Turkish Journal of Computer and Mathematics Education, 12(11), 6173-6179.

15. Tymann, K., Lutz, M., Palsbröker, P., & Gips, C. (2019). GerVADER - A German

Adaptation of the VADER Sentiment Analysis Tool for Social Media Texts. LWDA.

16. Walker, M. A., LItman, D. J., Kamm, C. A., & Abella, A. (1997). PARADISE: a

framework for evaluating spoken dialogue agents. ACL '98/EACL '98: Proceedings of

the 35th Annual Meeting of the Association for Computational Linguistics and Eighth

Conference of the European Chapter of the Association for Computational Linguistics,

271-280. https://doi.org/10.3115/976909.979652

17. Carletta, J. (1996). Assessing agreement on classification tasks: the kappa

statistic. Computational Linguistics, 22(2), 249-254.

18. Kuligowska, K. (2015). Commercial Chatbot: Performance Evaluation, Usability

Metrics and Quality Standards of Embodied Conversational Agents. Professionals Center

for Business Research, 2(02), 1–16.

19. Jadeda, M., & Varia, N. (2017). Perspectives for Evaluating Conversational

AI. arXiv. https://doi.org/10.48550/arXiv.1709.04734

20. Radziwill, N. M., & Benton, M. C. (2017). Evaluating Quality of Chatbots and

Intelligent Conversational Agents. arXiv. https://doi.org/10.48550/arXiv.1704.04579

https://www.tum.de/en/
https://www.tum.de/en/
https://aaltodoc.aalto.fi/bitstream/handle/123456789/112845/master_H%C3%A4rk%C3%B6nen_Ari-Pekka_2022.pdf
https://aaltodoc.aalto.fi/bitstream/handle/123456789/112845/master_H%C3%A4rk%C3%B6nen_Ari-Pekka_2022.pdf
https://www.tum.de/en/
https://trepo.tuni.fi/bitstream/handle/10024/132928/PavelImran.pdf
https://dl.acm.org/doi/proceedings/10.5555/976909
https://dl.acm.org/doi/proceedings/10.5555/976909
https://dl.acm.org/doi/proceedings/10.5555/976909
https://doi.org/10.3115/976909.979652
https://doi.org/10.48550/arXiv.1709.04734
https://doi.org/10.48550/arXiv.1704.04579

References

105

21. Ventakesh, A., Khatri, C., Ram, A., Guo, F., Gabriel, R., Nagar, A., ... Raju, A. (2018).

On Evaluating and Comparing Open Domain Dialog Systems. arXiv.

https://doi.org/10.48550/arXiv.1801.03625

22. Jain, M., Kumar, P., Kota, R., & Patel, S. N. (2018). Evaluating and Informing the

Design of Chatbots. DIS '18: Proceedings of the 2018 Designing Interactive Systems

Conference, 895-906. https://doi.org/10.1145/

23. Maroengsit, W., Piyakulpinyo, T., Phonyiam, K., Pongnumkul, S., Chaovalit, P., &

Theeramunkong, T. (2019). A Survey on Evaluation Methods for Chatbots. ICIET 2019:

Proceedings of the 2019 7th International Conference on Information and Education

Technology, 111-119. https://doi.org/10.1145/3323771.3323824

24. Duijst, D. (2017). Can we Improve the User Experience of Chatbots with

Personalisation?[Master’s thesis, University of Amsterdam].

25. Kim, T.K. (2015). T test as a parametric statistic. Korean journal of

anesthesiology, 68(6), 540–546. https://doi.org/10.4097/kjae.2015.68.6.540

26. Mouritsen, M.L., Davis, J.F., & Jones, S.C. (2016). ANOVA Analysis of Student

Daily Test Scores in Multi-Day Test Periods, 12(2), 73–82.

27. Davis, F. D. (1985). A Technology Acceptance Model for Empirically Testing New

End-User Information Systems: Theory and Results. Massachusetts Institute of

Technology.

28. Tomiuk, D. (2005). The Impact of Site-Communality on the Attitudinal and

Behavioural Components of Site-Loyalty: A Cross-Sectional Study [Ph.D, McGill

University]. pp. 208-2014

29. Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach's alpha. International

journal of medical education, 2, 53–55. https://doi.org/10.5116/ijme.4dfb.8dfd

30. Lin L, Huang Z., Othman, B., & Luo, Y. (2020). Let’s make it better: An updated

model interpreting international student satisfaction in China based on PLS-SEM

approach. PLoS ONE 15(7): e0233546. https://doi.org/10.1371/journal.pone.0233546

https://www.researchgate.net/profile/Danielle-Duijst
https://www.researchgate.net/institution/University_of_Amsterdam
https://doi.org/10.4097/kjae.2015.68.6.540
https://doi.org/10.5116/ijme.4dfb.8dfd
https://doi.org/10.1371/journal.pone.0233546

References

106

31. Gefen, D., & Straub, D. (2005). A Practical Guide To Factorial Validity Using PLS-

Graph: Tutorial And Annotated Example. Communications of the Association for

Information Systems, Vol. 16 (5). https://doi.org/10.17705/1CAIS.01605

32. Rost, D.H. & Sparfeldt, J.R. & Buch, S. (2008). Kann denn Kürze Sünde sein? -

Erfassung schulfachspezifischer Interessen mir nur einem Item [single-item-assessment

of school-subject-specific interests]. 225-237.

33. Almansor, E.H., Hussain, F.K. & Hussain, O.K. (2021). Supervised ensemble

sentiment-based framework to measure chatbot quality of services. Computing 103, 491–

507. https://doi.org/10.1007/s00607-020-00863-0

34. Abedin, A. F., Mamun, A. I., Nowrin, R. J., Chakrabarty, A., Mostakim, M., &

Naskar, K. (2021). A Deep Learning Approach to Integrate Human-Level Understanding

in a Chatbot. arXiv. https://doi.org/10.48550/arXiv.2201.02735

35. Sutoyo, R., Chowanda, A., Kurniati, A., & Wongso, R. (2019). Designing an

Emotionally Realistic Chatbot Framework to Enhance Its Believability with AIML and

Information States. Procedia Computer Science, 157, 621-628.

https://doi.org/10.1016/j.procs.2019.08.226

https://doi.org/10.17705/1CAIS.01605
https://doi.org/10.1007/s00607-020-00863-0
https://doi.org/10.48550/arXiv.2201.02735

Statutory Declaration

107

Statutory Declaration

I hereby declare that I am writing this work independently, that I have not used other than

the declared sources / resources, and that I have explicitly marked all material which has

been quoted either literally or by content from the used sources. Neither the current

version nor any other version of this thesis has already been submitted to another

department of the Ruhr West University of Applied Sciences or to another academic

university.

Gelsenkirchen, 11.07.2022 …………………………….

(Date) (Signature)

