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Abstract 

Developing an intelligent chatbot that can imitate human-to-human interaction has 

become important in recent years. For this reason, many studies have been conducted to 

evaluate the quality of chatbots. Furthermore, various approaches and tools, such as 

sentiment analysis, have been created to improve the performance of chatbots. 

This study examines previous research to identify the quality dimensions used to measure 

chatbots performance in order to develop a general chatbot assessment model that 

evaluates and compares chatbots quality. The developed evaluation model measures ten 

chatbot quality dimensions. This model is based on user experience. It requires human 

testers to interact with the chatbot to test its functioning and then a quantitative approach 

is used to collect data from user testing by conducting a survey with these testers. In this 

survey, they are instructed to evaluate the quality of the chatbot using a questionnaire that 

contains the items needed to evaluate each dimension. 

This study also investigates whether sentiment analysis can improve the quality of 

chatbots and, if so, to identify the dimensions improved with sentiment analysis. For this 

reason, two chatbot versions are implemented using the Rasa framework (one that cannot 

detect sentiment and the other that analyzes sentiment and responds accordingly).  

Following that, we used our evaluation model to evaluate and compare the two chatbot 

versions with two groups of participants by conducting a survey. In this survey, each 

group tested the functioning of one version. Then, both groups were instructed to use the 

items of the evaluation model to evaluate the version they tested. The goal of this survey 

was to evaluate the validity and reliability of the items used in the evaluation model to 

evaluate chatbots, and also to determine if sentiment analysis improved the chatbot 

quality by comparing survey results between the two groups. 

The results show that items used in the assessment model to evaluate chatbots are valid 

and reliable. The findings also indicate that sentiment analysis improves the chatbot’s 

quality. However, it improves the quality of some dimensions but not the majority of 

them. 
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1. Introduction 

A chatbot is a computer program that interacts with a human user using natural language 

[1]. The first chatbot was developed in 1960. It follows a set of rules to generate responses 

based on user input [2]. Nowadays, many chatbots and virtual assistants have been 

developed and are available commercially, such as Amazon Alexa, Google Assistant, 

Apple Shiri, and others. These assistants can mainly answer users’ questions and can 

perform a variety of activities such as setting alarm, scheduling meetings, online 

shopping, etc1. Furthermore, several businesses have developed their own chabots and 

embedded them into their websites to assist their customers. Because, these chatbots 

provide support seven days a week and twenty-four hours a day and can save the cost of 

hiring a real human assistant2. For this reason, developing an intelligent and an accurate 

chatbot that can imitate human-to-human conversations has become an important task in 

recent years. Because, a poor developed chatbot, that cannot understand users and give 

them responses that they didn’t expect, can easily lead to dissatisfaction and ruin the user 

experience [3].  

Since the usage of chatbots has grown in recent years, many studies have been conducted 

to evaluate their quality, which permits to identify and fix gaps in order to enhance the 

performance of the chatbot. Furthermore, other studies have been conducted to evaluate 

and to compare the quality of different chatbots or versions of the same chatbot in order 

to determine the best among them. In fact, a high-quality chatbot may improve the user 

experience, but a badly designed one might lead to user’s dissatisfaction. However, 

evaluating and comparing chatbot systems in terms of accuracy, efficiency, and the ability 

to satisfy users remains challenging [4].  

Furthermore, several techniques and tools, such as sentiment analysis3 or grammar and 

spelling correction [5], have been developed to increase the quality of the dialogue 

between users and chatbots.  

Sentiment analysis or Opinion mining is one of the most important tools used to improve 

the quality of chatbots. It is an approach used to detect a user's sentiment based on his 

                                                           
1 https://www.zdnet.com/home-and-office/smart-home/the-best-voice-assistant 
2 https://www.eatmy.news/2020/12/an-overview-of-chatbot-technology.html 
3 https://www.revechat.com/blog/chatbot-sentiment-analysis/ 

https://www.eatmy.news/2020/12/an-overview-of-chatbot-technology.html
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utterances. Sentiment analysis has grown in popularity in recent years, and it is currently 

used in a variety of fields and industries. Nowadays, it is primarily used in social media 

monitoring to determine users' opinions on specific topics and in business market 

monitoring to determine how users feel about a company's products or services. It is also 

integrated into many existing chatbots to enable them to understand human sentiments 

and respond accordingly4. The main objective of integrating sentiment analysis into 

chatbots is to give consumers the sense that they are speaking with a real person who 

understands their emotions. Because people are emotional beings, they expect the person 

with whom they are communicating to understand their feelings, which can enhance their 

experience and motivate them to use chatbots in the future5.  

This thesis aims to develop a general evaluation model that covers several quality 

dimensions for evaluating and comparing chatbots’ performance, and to investigate how 

sentiment analysis can improve the quality of chatbots. 

1.1. Motivation 

Despite their growing popularity, chatbots frequently face assessment and quality issues. 

Most existing studies aimed at evaluating the performance of chatbots focused on quality 

dimensions related to their research and the type of chatbot they were evaluating, rather 

than proposing a general evaluation model that is applicable to all types of chatbots. 

Nevertheless, many studies have been conducted to develop a general model to evaluate 

other types of software applications such as web apps (e.g WebQual [6]).  

Sentiment analysis, is considered as a significant chatbot improvement tool since it 

enables the chatbot to comprehend user sentiment and react accordingly. Thus giving the 

user the sense that they are chatting with a real person which can enhance their 

satisfaction. 

This study has two main goals. First, it focuses on developing and evaluating a 

multidimensional evaluation model that can be used to evaluate and compare the 

performance of chatbots. The second goal of this study is to investigate whether sentiment 

                                                           
4 https://monkeylearn.com/sentiment-analysis/ 
5 https://www.revechat.com/blog/chatbot-sentiment-analysis/ 

https://monkeylearn.com/sentiment-analysis/
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analysis can improve the quality of chatbots and, if so, to identify which quality 

dimensions are improved by sentiment analysis. 

1.2. Problem statement: 

In the previous section, we discussed the lack of previous research focusing on evaluating 

chatbots’ performance, as well as the importance of sentiment analysis as a tool for 

chatbots enhancement. The purpose of this thesis is to first create a general model for 

evaluating and comparing chatbots’ quality, and after that to investigate if sentiment 

analysis can enhance chatbots’ quality. To reach the desired objectives, we will 

investigate the following research questions: 

Research question 1: What are the quality dimensions that can be used to evaluate 

chatbots? 

The purpose behind answering this question is to identify the quality dimensions that 

permit the evaluation of the performance of chatbots. To accomplish this, we will refer to 

the literature review to investigate the quality attributes used in the previous studies to 

evaluate the quality of chatbots. Following that, we will develop a general evaluation 

model based on user experience that requires human testers and surveys to measure and 

compare the quality of chatbots.  

Research question 2: Can sentiment analysis improve the chatbot quality? 

The goal of answering this research question is to investigate if sentiment analysis can 

increase the chatbot’s quality by identifying the quality dimensions improved with 

sentiment analysis.  For this purpose, we will implement two versions of the same chatbot 

(The first version is incapable of understanding user sentiment, while the second is an 

improved version that can analyze sentiment and reply accordingly) using Rasa 

framework. Following that, we will utilize our assessment model to evaluate and to 

compare the quality between the two versions. 
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1.3. Outline 

This document is structured as follows: In Chapter 2, we present the background 

knowledge and the literature review required for this work. Chapter 3 details the chatbot 

evaluation model.  Chapter 4 describes the chatbot implementation. Chapter 5 details the 

research methodology. In chapter 6, we present the evaluation results.  Discussion on the 

evaluation results and the methodology are presented in Chapter 7. Finally, Chapter 8 

concludes the thesis, specifies the limitations of the study, and presents the future work. 

. 
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2. Background 

2.1. Dialogue system 

A dialogue system is a computer program that interacts with a human user using natural 

language. The conversation system provides an interface between the user and a 

computer-based application that allows natural interaction with the application. The 

dialogue system could be voice based or text based, and it can be used in phones, PDAs, 

vehicles, robots, and web browsers, etc. Although different Dialogue Systems have varied 

architectures, they all possess the same set of phases: input recognition, natural language 

understanding, dialogue management, response generation, and output rendering [1].  

 Components of dialogue system 

 

Figure 2.1: Components of a dialogue system 

As shown in figure 2.1, there are seven key components to a dialogue system: Natural 

Language Understanding, Input Decoder, Domain-Specific Component, Dialogue 

Manager, Response Generator, and Output Renderer [1]. 
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 The Input Decoder 

The Input Decoder is the component that detects the user input. It transforms the data into 

simple text. This component is only present in dialogue systems that aren't text-based. 

This component entails the translation of spoken sound (user utterances) to text (a string 

of words) [1].  

 Natural Language Understanding (NLU) 

Natural Language Understanding (NLU) is a subfield of computer science that focuses 

on applying computational techniques to learn, understand, and produce human language 

content. NLU can be used for a variety of purposes, such as supporting human-human 

communication and improving communication between humans and machines. The 

extraction of structured, semantic information from unstructured natural language input, 

such as chat messages, is the overall purpose of NLU services. The two major pieces of 

information that NLU needs to extract when using a dialogue system are intents and 

entities. An intent is a mapping between what a user says and what action the dialogue 

system should perform. It represents the user intention of the entire message and is not 

restricted to a specific location within it. An entity, on the other hand, is a tool used to 

extract parameter values from natural language inputs. There is a corresponding entity for 

any important data that needs to be extracted from a user's message. The value of an entity 

is called a slot. For this message "What is the weather in Paris?" for example, the intent 

is "asking the weather," but "Paris" is a slot of a potential entity named "City" [7].  

 The Dialogue Manager 

The Dialogue Manager is in charge of all parts of the conversation. It provides a semantic 

representation of the system response using a semantic representation of the user's input 

and determining how the text fits in the overall context. It accomplishes a variety of tasks, 

including: Maintains the discussion history, adopts certain dialogue approaches, deals 

with malformed and unrecognized text, retrieves information from files or databases, 

determines the best response for the user, manages initiative and system response, handles 

pragmatics issues, discourse analysis [1].  
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 Domain-Specific Component 

The Dialogue Manager needs to communicate with external software, such as a database 

or an expert system. As a result, the query or plans must be converted from the dialogue 

manager's internal representation to the format utilized by the external domain specific 

system (e.g. SQL). The domain-specific components are in charge of this interfacing. The 

Natural Language Query Processing system can handle this. From natural language, this 

system generates SQL queries [1].  

 Response Generator 

This component is responsible for producing the response. It involves making decisions 

on what information should be included, how information should be arranged, word 

choice, and message syntactic structure. Simple methods, such as inserting retrieved data 

into specified slots in a template, are used by current systems [1].  

 Speech Generation 

This component converts the message created by the response generation component into 

spoken language. There are two ways that can be utilized to generate speech. The first 

method is to employ prerecorded canned speech, which can be combined with retrieved 

or previously recorded samples, for example. "Welcome, how can I help you?"  The 

second method is to employ text-to-speech synthesis. Text is used to generate speech in 

this case [1].  

2.2. Classification of dialogue system 

 Chatbots 

A chatbot, often known as a bot, is a computer program that simulates human 

conversation. Users interact with a chatbot using the chat interface or by voice, just as 

they would with a real person. Chatbots interpret the user's utterances and respond with a 

pre-defined response. They can be found on platforms such as Facebook Messenger, 

Whatsapp, Skype, Slack, Line, Kik, Wechat, and even in websites. Chatbots have an 

application layer, a database, APIs, and a User Interface. One of the benefits of chatbots 
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is that, unlike apps, they aren't downloaded, don't need to be updated, and don't take up 

memory on the phone. One of chatbots most appealing advantages is that, they are 

available 24 hours a day/seven days a week and a single chatbot may respond to several 

people at the same time6.  

Chatbots can be classified into the following categories:  

2.2.1.1. Rule-based chatbots 

Rule-based chatbots use a set of rules to generate answers, e.g. if an input a is received, 

then perform action b and return response c. The Rule-based method consists of a pair of 

creating-pattern responses or templates. These templates may be created to handle a great 

range of inputs by using Natural Language Processing methods such as Semantic Role 

Labeling, Named Entity Recognition, and Part of Speech tagging, but it necessitates 

that the user enters entire sentences. The rule-based approaches may take more time than 

the other methods since they need the construction of many hand-written rules, but they 

may also be able to handle a broader range of topics as a result [8].  

2.2.1.2. Corpus-Based chatbots 

Corpus-based chatbots are AI-powered bots that combine the simplest features of Rule-

based and Intellectually independent chatbots. Artificial Intelligence (AI) could be 

viewed as a computerized version of human intelligence. Artificial intelligence (AI) is a 

branch of computer science that focuses on developing intelligent machines that function 

and "think" like humans. AI-powered chatbots not only understand natural language, but 

also follow a predetermined path to ensure that they answer the user's problem. They can 

remember the conversation's context as well as the user's preferences. These chatbots can 

switch from one topic of conversation to another as needed, and they can respond to any 

user request at any time7. 

AI chtbots are also divided into two categories: 

 

                                                           
6 https://www.eatmy.news/2020/12/an-overview-of-chatbot-technology.html 
7 https://www.eatmy.news/2020/12/an-overview-of-chatbot-technology.html 

https://www.eatmy.news/2020/12/an-overview-of-chatbot-technology.html
https://www.eatmy.news/2020/12/an-overview-of-chatbot-technology.html
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Retrieval-based models: 

A database of possible responses is required for retrieval-based models. This approach 

obtains the most relevant candidates from the database that match the current utterance, 

then selects the most appropriate response for retrieval [9]. 

Generative model: 

Generative models use machine learning techniques to construct answers in real time. The 

model is used to produce responses by "translating" inputs into responses, and it is trained 

on a dataset of real dialogues. Some of the most current models for generating chatbot 

replies are Statistical Machine Translation (SMT) models [9]. 

2.2.1.3. Hybrid Models 

Hybrid models are a combination of rule-based and deep learning-based design. They're 

created with the help of a collection of pre-defined rules and machine learning algorithms 

[10]. 

 Task-based dialogue systems/Task-oriented dialogue systems  

Task-based dialogue systems are AI chatbots that are more advanced than standard 

chatbots. Normal chatbots are utilized to respond to user questions in a question/answer 

process, whereas task oriented dialogue systems are meant to assist a user in completing 

a task, such as making an airplane reservation or purchasing a product. Every task-

oriented conversation system is based around frames. A frame is a type of knowledge 

structure that represents the types of intentions that the system may extract from human 

sentences. It is composed of a collection of slots, each of which can take a set of possible 

values. This collection of frames is commonly referred to as a domain ontology. The set 

of slots in a task-based dialogue frame defines what the system needs to extract. For 

example, a slot in the travel domain could be of the type city, date, airline, etc. [10].  
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2.3. Relevant dialogue systems 

 Meena  

Meena is a chatbot developed by Google. The model has 2.6 billion parameters and is an 

end-to-end trained neural conversational model. It was trained on 341GB of filtered social 

media conversations and employs a Transformer architecture known as The Evolved 

Transformer. Meena has 1.7 times higher model capacity and was trained on 8.5 times 

more data than the biggest GPT-2 model. The trained chatbot is considered as one of 

the most intelligent and specific existing chatbots. In comparison to other chatbots, the 

chatbot has amazing context understanding, although it still has limitations. Repetition 

and occasionally behaving as if the chatbot's prior response was from the user are two of 

its main weaknesses. Furthermore, while the work is centered on sensibleness and 

specificity, it does not take into account long-term memory or persona [8]. 

 Replika 

Replika is a chatbot that mixes neural generation and retrieval-based approaches. When 

producing responses, the neural generation takes into account the persona-based and the 

emotional embeddings. The retrieval-based model is trained using a hard negative mining 

technique, which forces the model to generate low matching scores for similar contexts 

and responses. This is done to avoid "echo-responses," which occur when a retrieval-

based model retrieves the most semantically comparable response rather than the most 

suitable response. The system also takes into account conversation history and context by 

encoding it and providing it to retrieval and/or generating models. Furthermore, the agent 

can comment on and ask questions regarding images sent by the user [8].  

 Mitsuku 

Mitsuku is a rule-based chatbot created with Artificial Intelligence Markup Language 

(AIML). Mitsuku has received the most Loebner prizes (5 times), where it was recognized 

as the most human-like chatbot in the competition. Mitsuku has a small memory where it 

keeps user information and certain contextual keywords. Some reported issues with the 
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chatbot include its repetitiveness, where it constantly utilizes the same template answer 

[8]. 

2.4. Rasa Framework 

Rasa is a Python open source framework for chatbot development that uses machine 

learning approach. Rasa is designed to offer developers full control and customization 

over the development of their bots. Rasa creates all the baseline implementations, which 

facilitates developers work and allows them to concentrate on the domain-specific 

tasks.  Rasa consists of two parts: Rasa NLU and Rasa Core. Rasa NLU is in charge of 

understanding a user's input, which can include intent classification and named entity 

recognition, slots extraction, etc. Rasa Core, on the other hand, manages the dialog flow 

using a neural network that predicts the next action depending on the current state. 

Alpacabot (Alex the Alpacabot: a virtual real estate agent 2021), Moltron (Moltron: 

educating users about machine learning 2021), Picpay (Connecting Brazilian Families 

with Emergency Government Assistance 2021), and others are examples of Rasa 

chatbots. The majority of these AI chatbots are text-based [11, 12, 13]. 

 Architecture 

 

 

Figure 2.2: Rasa architecture8 

                                                           
8 https://rasa.com/docs/rasa/arch-overview/ 

https://rasa.com/docs/rasa/arch-overview/
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The general architecture of the Rasa framework is seen in Figure 2.2. 

2.4.1.1. Rasa NLU  

Rasa NLU is the component in charge of NLU prediction, which can include intent 

classification and named entity recognition, slots extraction, etc. This is accomplished by 

providing training examples that indicate how the chatbot should understand user 

messages, and then a model is trained using these examples. These example are defined 

in the “nlu.yml” in the data folder of Rasa framework [8]. 

The three most important categories that Rasa NLU can recognize and extract are the 

following9: 

The Intents: An intent represents the user intention of the entire message. All intents 

need to be defined in the “domain.yml” file of Rasa framework. 

Intent example: 

intents: 

  - greet 

The entities: An entity is a tool used to extract parameter values from natural language 

inputs. All entities needed are defined in the “domain.yml” file. 

Example of entities: 

entities: 

   - PERSON            

   - time                

   - membership_type   

   - priority          

The Slots: Slots are quite important in Rasa. Because it functions as a key-value store, it 

can be used to store information provided by the user. They can support a variety of types, 

including text, boolean, float, list, category, custom, and unfeaturized. Slots can be filled 

not only from extracted entities (e.g. "Paris" is a slot of an entity named "City"), but also 

from intents, from text, or from a custom action. Filling the slots with intents allows to 

apply the filling regardless of the message's intent (e.g. a slot with a Boolean type can be 

                                                           
9 https://rasa.com/docs/rasa/domain 
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filled with true when an intent accept is detected and false when an intent deny is 

detected). The from-text filling will use the text of the most recent user utterance to fill 

the slot. The custom filling will use custom actions to fill the slot. All slots needed are 

defined in the “domain.yml” file. Using the keyword mapping, the type of filling (from 

intents, from entities, custom, or from text) is specified. 

An example of slots: 

slots: 

   cuisine: 

      type: text 

      mappings: 

      - type: from_entity 

        entity: cuisine 

 

 

Figure 2.3: NLU components life cycle10 

The NLU prediction is based on NLU components. These components are responsible of 

training the model for natural language understanding prediction, such as detecting user 

intent, extracting named entities and slots, and predicting sentiments [8].  

                                                           
10 https://rasa.com/docs/rasa/tuning-your-model/ 

https://rasa.com/docs/rasa/tuning-your-model/
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The NLU module is implemented as a pipeline that processes the input text in a series of 

steps called as components. The lifecycle of Rasa NLU components is represented in 

Figure 2.3. A context object is passed to each component before the pipeline starts so that 

they can dissipate information. The output of one component can be utilized as the input 

of the next using this object. Each component of the pipeline is run in turn, and the output 

of each is available to the next. The Rasa SDK permits developers to implement their own 

components called Custom Graph Components or Custom Components. All pipeline 

steps are defined in the “config.yml” file of Rasa framework under the keyword 

“pipeline” [11].  

 Predefined NLU components: 

The following are some of the most important predefined NLU components11: 

The WhitespaceTokenizer: The WhitespaceTokenizer creates a token for every 

whitespace separated character sequence from the user sentence Any character not found 

in the range a-zA-Z0-9_#@& will be replaced with whitespace.  

RegexFeaturizer: The RegexFeaturizer creates features for entity extraction and intent 

classification. It generates a list of regular expressions defined in the training data format 

during training. A feature will be set for each regex that indicates whether the expression 

was detected in the user message or not. To facilitate classification, all features will be 

fed into an intent classifier / entity extractor.  

LexicalSyntacticFeaturizer: It provides lexical and syntactic features for a user message 

in order to assist entity extraction. It creates features for entity extraction and passes over 

each token in the user message with a sliding window, creating features according to the 

configuration.  

CountVectorsFeaturizer: The CountVectorsFeaturizer creates intent classification and 

response selection features. It represents user messages, intents, and responses as a bag 

of words.  

DIETClassifier: The DIET (Dual Intent and Entity Transformer) is a multi-task 

architecture for classifying intent and recognizing entities. The architecture is based on a 

transformer that serves both tasks.  

                                                           
11 https://rasa.com/docs/rasa/components/ 

https://rasa.com/docs/rasa/components/
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EntitySynonymMapper: It Converts synonymous entity values to the same value. This 

component ensures that identified entity values are mapped to the same value if the 

training data contains defined synonyms.  

Response Selector component:  It's a dictionary with the key representing the response 

selector's retrieval intent and the value containing predicted responses, confidence, and 

the response key. It may be used to create a response retrieval model to predict a bot 

response straight from a list of possible responses. The dialogue manager uses the model's 

prediction to utter the predicted responses. It follows the exact same neural network 

architecture and optimization as the DIETClassifier and embeds user inputs and response 

labels in the same space.  

The FallbackClassifier: If the intent classifier was unable to identify an intent with a 

confidence greater than or equal to the FallbackClassifier's threshold, the 

FallbackClassifier classifies the user message with the intent NLU fallback. It also creates 

a Fallback action that handles messages with uncertain NLU predictions.  

 Custom Graph Components: 

Rasa contains a variety of NLU components that can be used to train the NLU module. 

The Rasa framework permits developers to implement their own NLU components called 

Custom Component or Custom Graph Components in order to perform a specific NLU 

task for which Rasa does not have a pre-build component for example, a sentiment 

analyzer, or a word checker that corrects spelling errors, etc. The Custom Component is 

implemented as a Python class that contains all of the necessary methods to train the NLU 

module to perform that NLU specific task. The file containing the Custom Component 

class and the name of the Custom Component class must be referenced using the format 

“<file_name>.<CustomComponentClass_name>” under the keyword “pipeline” of 

the “config.yml” file of Rasa framework. There are two sorts of Custom Components: 

The pre-trained Custom Components (for example, trained on different datasets and 

packaged as python libraries, pkl files, etc.) and the Custom Components that need to be 

trained using the Rasa NLU training data12. 

                                                           
12 https://rasa.com/blog/enhancing-rasa-nlu-with-custom-components/ 
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2.4.1.2. Rasa Core 

The dialog management is the responsibility of the Rasa Core. It keeps track of a 

conversation and decides how the chatbot should respond. Based on previous user inputs, 

it generates a probability model that decides a set of actions to perform, based on the 

“rules” and “stories” defined in the training data. Rasa Core can execute three type of 

actions: “Simple response”, “custom action”, or “form”. Internally, Rasa Core uses the 

concept of policies to specify how the next action is chosen. All policies are defined in 

the “config.yml” of Rasa framework under the keyword “policies” [8,11].  

 Type of actions: 

Simple Response: The responses are simple messages or utterances that the chatbot can 

employ to reply to user input. These responses are defined in the “domain.yml” of Rasa 

framework under the keyword “responses”. A response can be a simple string, a button, 

or an image. Each utterance has one or more candidate responses, from which the chatbot 

will choose one randomly. Responses are simple messages that the chatbot uses to reply 

to user intent, but custom actions must be utilized when more complex tasks are required 

[8,13].  

Example of a simple response:  

responses: 

  utter_greet: 

  - text: "Hi there!" 

  utter_bye: 

  - text: "See you!" 

Form: The form is how Rasa gathers a set of information for a certain goal. All forms are 

defined in “domain.yml” file under the keyword “forms”. Each form contains a set of 

slots that represents the data that must be gathered. This set of slots must be defined 

directly under the name of the form declared in the “forms” section in “domain.yml”. 

Once the form has been activated, the chatbot will use the slots’ utterances defined in the 

“responses” section in “domain.yml” to ask the user and collect responses so that the 

form's slots can be filled. The form is automatically stopped after all of the slots have 

been filled [13].  
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Custom action: While responses are simple messages that the chatbot can use to respond 

to user input, custom actions are used when more complex tasks are required, such as 

testing if the information entered by the user matches certain conditions and returning a 

specific response, modifying slots values to influence next actions, calling an external 

API, or storing and retrieving data from an external database. The “action.py” file of Rasa 

open source contains all customs actions' code. Every custom action is built as a class 

with two main methods: "name" and "run." The "name" method always returns a string 

with the custom action's name. The "run" section, on the other hand, provides the code 

for the custom action's task, which may include accessing an external API, saving and 

retrieving data from an external database, and etc. [8,14].  

A custom action with the following name “validate <form_name>” can also be used to 

test and validate a form's required slots. As a result, the chatbot will only accept 

slots values that match specific conditions. A class for the given custom action must be 

built in the “action.py” file. This class mainly includes the "name" method, which returns 

the name of the given custom action, as well as additional methods for testing and 

validating the form’s required slots values. Each of these methods contains the code that 

permits to test if the slot value meets the validation requirements. These methods are 

named in the following format “Validate <SlotName>”, where the “<SlotName>” field 

containing the name of the slot to be tested and validated. All custom actions need to be 

declared in “domain.yml” under the “actions” keyword [8,13].  

 Policies: 

Policies specify the next action to take based on user input. They are all defined in the 

“config.yml” file. Multiple policies can be defined at the same time. In this situation, the 

policy with the greatest confidence score prevails. Policies are a mix of machine learning 

(such as Transformer Embedding Dialogue Policy, Memoization Policy) and rule-based 

(Rule Policy) policies [11,13].  

Some of the most commonly utilized Rasa policies are as follows13: 

The Transformer Embedding Dialogue (TED) Policy: It is a multi-task architecture 

that predicts next actions and recognizes entities. The architecture is composed of 

different transformer encoders that are shared between the two activities. A Conditional 

                                                           
13 https://rasa.com/docs/rasa/policies/ 
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Random Field (CRF) is used to predict a sequence of entity labels. The dialogue 

transformer encoder output and the system action labels are embedded into a single 

semantic vector space for the next action prediction.   

The RulePolicy: The RulePolicy is a policy that deals with conversation parts that have 

a fixed behavior (e.g. business logic). It predicts the next action based on rules provided 

in training data. All rules are defined in the “rules.yml” files in the training folder of Rasa 

framework. To handle cases when the policies cannot predict the next action with high 

confidence, the RulePolicy can be configured to run a default action and to revert back to 

the state of the conversation before the user message that caused the fallback. Thus, it 

will not influence the prediction of future actions  

Memoization Policy: It checks if the current dialogue corresponds to the stories defined 

in “stories.yml” file in the training folder of Rasa framework. It predicts the next action 

with a confidence of 1.0 based on the matching stories in training data. If no matching 

conversations are found, the policy predicts None with a confidence level of 0.0.  

2.4.1.3. Action Server 

The Rasa Action Server permits to execute all custom actions implemented in “action.py” 

file of Rasa framework. the Action Server runs independent of the NLU Module and the 

Rasa Core. Because Rasa Core's only requirement is to be able to communicate with the 

Action Server via a standardized API, the Rasa SDK forces an object-oriented pattern to 

ensure compatibility with the Rasa Core. The Rasa Action Server is called every time 

Rasa Core predicts a custom action to be executed14. 

2.4.1.4.  The input/output channels, Tracker store, Lock store, File system 

The input/output channels: They are the chatbot application's frontend (e.g. Web 

browser, Facebook Messenger, etc.) [13]. 

The Tracker store: The tracker is an object that saves information about the conversation 

state. The conversation tracker is saved in the tracker store. The tracker is stored in 

memory by default, but an external database can be used to store the tracker [13]. 

                                                           
14 https://rasa.com/docs/rasa/custom-actions/ 

https://rasa.com/docs/rasa/policies#rule-policy
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The Lock store: Rasa employs a ticket lock system to ensure that incoming messages for 

a given conversation ID are processed in the correct order, and conversations are locked 

while messages are being processed. This means that many Rasa servers can run as 

replicated services in parallel, and clients don't have to submit messages to the same node 

for a given conversation ID. Lock store is used to save conversation locks. Conversation 

locks are kept in memory by default15. 

The File system: Trained models can be accessible through a file system, such as a local 

hard disk, an HTTP server, or an external cloud, where they are stored [13].  

 Workflow / dialogue management flow 

 

Figure 2.4: Rasa dialogue flow 

The architecture or dialogue management flow consists of 6 steps, as shown in figure 2.4: 

The received message is first delivered to the Interpreter, who converts it into a dictionary 

containing the original text, the purpose, and any entities recognized. This is handled by 

the NLU module. Second, the message is transmitted from the Interpreter to the Tracker, 

who keeps track of the state of the conversation. After that, each policy receives the 

current status of the tracker. Then, each policy determines the next action to take. Next, 

the tracker logs the chosen action. Finally, a response is sent to the user16. 

                                                           
15 https://rasa.com/docs/rasa/lock-stores/ 
16 https://rasa.com/docs/rasa/next/architecture/ 

https://rasa.com/docs/rasa/lock-stores/
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 File structure 

After installing Rasa, the “rasa init” command can be used to start a project. After that, 

the following files and folders are created: domain.yml, config.yml, actions.py, 

credentials.yml, endpoints.yml and a data folder that contains the rules.yml, stories.yml 

and nlu.yml files [13].  

The domain.yml file: It represents the chatbot's domain of knowledge. It contains all the 

names of all intents, entities, slots, custom actions, forms, and the name and text of 

simple responses or utterances that the chatbot may execute.  

The config.yml file: It defines the Rasa NLU's “pipeline” and the Rasa Core's “policies”. 

The pipeline is where the NLU components are listed. These components are used to 

extract features such as intents and entities from the user input. Policies is where the Rasa 

Core policies are defined to predict the next action to take based on user input.   

The action.py: The actions.py is where all custom actions classes are implemented. 

These custom actions are executed by the action server every time Rasa core predicts that 

a custom action is required.  

The credentials.yml file: It includes elements related to messaging platform 

authentication, such as Slack, Facebook Messenger, and others.  

The data folder: The data folder consists of three files: nlu.yml, rules.yml, and 

stories.yml. These three files contain the chatbot’s training data. nlu.yml lists example 

texts with entities if needed for each intent. Rules represent combinations of intent and 

actions. The order in which these collections' intent and actions are listed determines the 

order in which they are executed. Stories are collections similar to Rules, the only 

difference between them is that a story has a starting and an ending points.  

The endpoints.yml file: It contains endpoint information. For example, if the models are 

stored on a cloud server, an endpoint is needed to access them. It specifies also where 

“tracker store” saves the conversation tracker, whether in the memory or in a SQL 

database.  
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 Training data 

To make NLU prediction and predict the next action, both modules NLU module and 

Rasa Core need to be trained.  

2.4.4.1. NLU Module Data  

To make NLU prediction, the Rasa NLU module must be trained using NLU training 

data. NLU training data consists of example user utterances categorized by intent. This 

generally includes any entities contained in his message. The nlu.yml file in the data 

folder of Rasa framework contains all of the NLU training data [11]. 

Example of NLU training data17: 

- intent: greet 

  examples: | 

    - Hey 

    - Hi 

    - hey there [Sara](name) 

2.4.4.2. RasaCore data 

The Rasa Core can be trained to predict next action using rules and stories, which are a 

sort of training data.  

The Rules: Rules describe short pieces of conversations that should always follow the 

same path. It links a user's intent to one or more actions. An action could be a simple 

response, a custom action or a form. The rules can recognize intents or actions (response, 

custom action or form) only if they are defined in the domain.yml file. If the action used 

in a rule is a form, the chatbot will keep requesting the user to fill up all of the form's 

required slots. All necessary rules must be defined in the Rasa’s rules.yml in the data 

folder [11]. 

Example of a simple Rule18: 

rules: 

                                                           
17 https://rasa.com/docs/rasa/training-data-format/#example 
18 https://rasa.com/docs/rasa/rules/ 

https://rasa.com/docs/rasa/training-data-format/#example
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- rule: Say `hello` whenever the user sends a message with intent `greet` 

  steps: 

  - intent: greet 

  - action: utter_greet 

The Stories: Stories are a larger collection of Rasa rules that describe a conversation 

from beginning to end. Stories can be divided into smaller stories that can be related using 

checkpoint keywords. After training the chatbot with the “rasa train” command, the 

models generated employ stories to predict the next action. All necessary stories must be 

defined in the Rasa’s stories.yml in the data folder [13].  

Example of a simple story19: 

stories: 

- story: story to find a restaurant 

  steps: 

  - intent: find_restaurant 

  - action: restaurant_form 

  - action: utter_restaurant_found 

 Rasa server/Rasa Open Source HTTP API 

The command line “rasa run” permits to run the chatbot as a server. Running this Rasa 

server permits to interact with the chatbot over webhook endpoints using chat applications 

such as Facebook Messenger, What’s up, Slack or Telegram. However, it does not 

enable the interaction with a front-end client like a web app or a mobile app via HTTP.  

The Rasa Open Source HTTP API allows a front-end client to communicate with a 

running Rasa server via the API HTTP endpoints. The command line “rasa run --enable-

api” activates the HTTP API, allowing the Rasa server to respond the front end client 

HTTP requests20. 

 

                                                           
19 https://rasa.com/docs/rasa/rules/ 
20 https://rasa.com/docs/rasa/http-api/ 

https://rasa.com/docs/rasa/rules/
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2.5. Sentiment analysis 

Sentiment analysis is a technique of natural language processing (NLP) for identifying 

positive, negative or neural sentiment in texts. Sentiment analysis focuses on a text's 

polarity (positive, negative, or neutral), but it can also identify particular feelings and 

emotions (angry, happy, sad, etc.), urgency (urgent, not urgent), and intents (interested 

vs. not interested). Sentiment analysis is quickly becoming an essential tool for 

monitoring and understanding sentiment in all types of data, as humans express their 

emotions and opinions more openly than ever before. Nowadays, businesses frequently 

utilize it to identify sentiment in social data, analyze brand reputation, and comprehend 

customers. Using sentiment analysis, companies can learn what makes customers happy 

or upset by automatically analyzing customer feedback, such as thoughts in survey 

responses and social media conversations, to tailor products and services to match their 

customers’ demands21. 

 Sentiment analysis algorithms 

There are three main types of algorithms for implementing sentiment analysis, depending 

on the amount of data to analyze and the accuracy of the model22. 

Rule-based:  A rule-based system employs a set of manually crafted rules to analyze 

sentiment. Various NLP techniques developed in computational linguistics may be 

included in these rules, such as stemming, tokenization, parsing, and part-of-speech 

tagging, and Lexicon (i.e. lists of words and expressions). 

Automatic:  Unlike rule-based systems, automatic approaches depend on machine 

learning techniques rather than manually constructed rules. A sentiment analysis task 

is modeled as a classification problem, in which a classifier is given a text and outputs a 

category, such as positive, negative, or neutral. To implement a sentiment classifier using 

the machine learning technique, two processes are required: training and prediction. 

Based on the test samples used for training, the model learns to associate a specific input 

                                                           
21 https://monkeylearn.com/sentiment-

analysis/#:~:text=Sentiment%20analysis%20(or%20opinion%20mining,feedback%2C%20and%20unders

tand%20customer%20needs. 
22 https://monkeylearn.com/sentiment-

analysis/#:~:text=Sentiment%20analysis%20(or%20opinion%20mining,feedback%2C%20and%20unders

tand%20customer%20needs. 

https://monkeylearn.com/sentiment-analysis/#:~:text=Sentiment%20analysis%20(or%20opinion%20mining,feedback%2C%20and%20understand%20customer%20needs.
https://monkeylearn.com/sentiment-analysis/#:~:text=Sentiment%20analysis%20(or%20opinion%20mining,feedback%2C%20and%20understand%20customer%20needs.
https://monkeylearn.com/sentiment-analysis/#:~:text=Sentiment%20analysis%20(or%20opinion%20mining,feedback%2C%20and%20understand%20customer%20needs.
https://monkeylearn.com/sentiment-analysis/#:~:text=Sentiment%20analysis%20(or%20opinion%20mining,feedback%2C%20and%20understand%20customer%20needs.
https://monkeylearn.com/sentiment-analysis/#:~:text=Sentiment%20analysis%20(or%20opinion%20mining,feedback%2C%20and%20understand%20customer%20needs.
https://monkeylearn.com/sentiment-analysis/#:~:text=Sentiment%20analysis%20(or%20opinion%20mining,feedback%2C%20and%20understand%20customer%20needs.
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(i.e. a text) with the corresponding output (tag) during the training process. The text input 

is converted into a feature vector by the feature extractor. To generate a model, feature 

vectors and tags (such as positive, negative, or neutral) are fed into the machine learning 

algorithm. In the prediction process, the feature extractor is utilized to convert unseen text 

inputs into feature vectors. The model then uses these feature vectors to generate 

predicted tags such as positive, negative, or neutral. 

Hybrid: Hybrid system combine both rule-based and automatic techniques into a single 

system. One of the major advantages of these methods is that the results are frequently 

more accurate. 

 Vader sentiment 

VADER stands for "Valence Aware Dictionary and sEntiment Reasoner" and is open 

source. The tool was released in 2014 and focuses mostly on social media messages. It 

rates the input using a lexicon-driven approach along with additional heuristics. VADER 

provides consistent ratings and does not require any training data because it is rule based 

approach. It's included in the NLTK package and can be used on unlabeled text data. Its 

development was divided into 7 phases: Gather lexical features of established sentiment 

lexicons, gather lexical features characteristic for microblogging domains, Rate lexical 

feature candidates, Filtering, building human heuristics, Evaluate heuristics, and 

evaluation and results. VADER sentiment analysis is based on a lexicon that contains 

more than 7500 words. This lexicon maps lexical features to emotion intensities called 

sentiment scores. The VADER sentiment analysis produces a sentiment score or emotion 

intensity in the range -4 to +4, with -4 being the most negative and 4 being the most 

positive. The midpoint 0 indicates a neutral feeling. A text's sentiment score is computed 

by summing the intensity of each word in the text. In Python programming language, a 

normalization is applied to the total to map it between -1 and +123. VADER performed 

exceptionally well in a variety of domains, including tweets, movie reviews, and product 

reviews [15]. 

                                                           
23 https://medium.com/@piocalderon/vader-sentiment-analysis-explained-f1c4f9101cd9 
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2.6. Flask 

Flask is a web framework written in Python that facilitates the development of web 

applications. Flask is typically referred to as a micro framework since it lacks 

functionality such an ORM (Object Relational Manager). It is intended to keep the 

application's core simple and scalable. It has a lot of features, such as URL routing and a 

template engine24. 

2.7. Ngrok 

Ngrok is a globally distributed reverse proxy that serves web services from any cloud, 

private network, or private workstation. Ngrok is the quickest way to put an app on 

the internet. It allows to test apps against a development backend as well as build 

webhook consumers and demo websites without needing to deploy them. It requires no 

setup and gets started with a single command. It makes it simple to connect to networks 

because no port forwarding, dynamic DNS, or VPN are required25. 

2.8. SQLite 

SQLite is an in-process library that creates a transactional SQL database engine that is 

self-contained, serverless, and requires no configuration. SQLite's code is in the public 

domain, which means it can be used for any purpose, commercial or private. SQLite is 

the most widely used database on the world, with an uncountable number of applications, 

including some high-profile projects. SQLite does not have a separate server process. It 

reads and writes to regular disk files directly. The database file format is cross-platform, 

allowing to copy databases between 32-bit and 64-bit platforms easily26.  

 

                                                           
24 https://pythonbasics.org/what-is-flask-python/ 
25 https://ngrok.com/ 
26 https://www.sqlite.org/about.html 
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2.9. Chatbots evaluation 

Articles and research papers are examined in this section to provide a comprehensive 

review of existing chatbot evaluation metrics. These papers are discovered mostly 

through the keywords: chatbot, chatbot evaluation, evaluation framework, evaluation 

metrics, quality, performance, and their combinations. These Papers were selected if they 

contained at least one of the mentioned keywords in their title or abstract, and if they 

discussed some element of chatbot quality. Following the refinement, we selected eight 

papers that were rated most relevant. Some of these publications are based on the 

combinations of previous studies, while others are general views on evaluation aspects 

and their applicability to a research. A summary of the contents of these papers is 

described below. 

 The PARAdigm for DIalogue System Evaluation (PARADISE) 

The PARAdigm for DIalogue System Evaluation (PARADISE) framework [16] is one of 

the oldest frameworks for evaluating chatbots. It was developed by Marilyn et al. in 1997. 

The framework decouples task requirements from an agent's dialogue behaviors, supports 

for comparisons of dialogue strategies, calculates performance over sub dialogues and 

entire dialogues, specifies the relative contribution of various factors to performance, and 

allows the comparisons of agents performing different tasks by normalizing for task 

complexity. 

PARADISE supports comparisons among dialogue strategies by offering a task 

representation that decouples what an agent has to do in terms of task requirements from 

how the agent carries out the task via dialogue. PARADISE employs a decision-theoretic 

framework to specify the relative contribution of multiple factors in an agent's 

performance overall. Performance is represented as a weighted function of a task-based 

success measure and dialogue-based cost measurements, with weights calculated by 

correlating user satisfaction with performance. Performance may also be calculated for 

sub dialogues as well as entire conversations. PARADISE combines a heterogeneous set 

of performance measures (i.e., user satisfaction, task success, and conversation cost) into 

a single performance evaluation function using decision theory methodologies. The use 

of decision theory necessitates the specification of both the decision problem's objectives 
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and a set of measures (known as attributes in decision theory) for operationalizing the 

objectives. Other novel components of PARADISE include the use of the Kappa 

coefficient [17] to operationalize task success and the use of linear regression to quantify 

the relative impact of the success and cost factors to user satisfaction. This Kappa 

coefficient is calculated from confusion matrix that summarizes how effectively an agent 

fulfills the information requirements of a specific task for a set of dialogues instantiating 

a set of scenarios. 

 Commercial Chatbot: Performance Evaluation, Usability Metrics and 

Quality Standards of Embodied Conversational Agents 

In this research paper published in 2015, Kuligowska [18] developed eleven aspects to 

evaluate the performance of commercial virtual assistants in the B2C 

industry.   Kuligowska used a standard measurement tool with a rating scale of 1 to 5, 

assigning ratings of 1-very poor, 2-poor, 3-satisfactory, 4-good, and 5-very good to each 

of the 11 dimensions. Finally, Kuligowska generated a simple average of all the evaluated 

dimensions, providing an overview of the chatbot's overall quality. She employed this 

approach to evaluate and compare the performance of seven commercial chatbots. 

According to her, the chatbot with the highest overall rating performed the best. 

Kuligowska used the following quality dimensions to evaluate chatbots: 

The visual look: According to kuligowska, the book is frequently evaluated by its cover. 

As a result, the outer appearance of a virtual assistant is an important factor that 

determines the quality of its implementation.  

The form of implementation on the website: This aspect evaluates the visibility of a 

virtual assistant embedded on a website. 

The text-to-speech unit: According to Kuligowska, the Text-To-Speech module, that 

converts written text into synthetic speech, can boost user trust. As a result, it is one of 

the quality components that must be considered while evaluating chatbots. 

The knowledge base (basic knowledge): This aspect focuses on measuring the chatbot 

ability to respond simple questions such as its name, the current time, etc.  
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The knowledge base (specialized knowledge): This aspect measures the chatbot built-

in specialized knowledge such as the products and services offered, company contact 

information, and advanced knowledge about the firm. 

The presentation of additional knowledge and functionality: This quality aspect focus 

on the additional functionalities performed by chatbots to facilitate user navigation on the 

website (e.g., "Back" button or scrolling the chat history, Term "Help" or "Info" button, 

etc). 

Conversational skills and context-sensitivity: This aspect measures the chatbot's ability 

to lead a coherent conversation, handle complex user input, and take control of the 

conversation introducing topics. 

 Personality traits: According to Kuligowska, commercial chatbots must be equipped 

not only with skills, but also with the ability to express personality. It is essential to add 

a number of psychological layers to a virtual assistant's knowledge base, such as 

personality traits, biographical details, and expressed emotions. 

Personalization options: Personalization options have a significant positive influence on 

consumers' judgment of the quality of interaction with a commercial chatbot. Users 

considered a conversational agent as more likable, trustworthy, and useful when they 

can customize its characteristics and appearance. 

Emergency responses in unexpected situations: Commercial virtual assistants should 

be able to manage emergency situations such as understanding a user's unclear statement, 

detecting a lack of information on a specific question, dealing with insults, recognizing 

multiple languages, etc. Any typos, misspellings, or colloquialisms used in the dialogue 

should also be also recognized by the chatbot. 

The ability to classify the chatbot and website by the user: User feedback on the 

chatbot is important for the chatbot's owner. Every chatbot must allow users to rate their 

overall satisfaction with the chatbot using a rating method such as a five-star rating, for 

example.  
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 Perspectives for Evaluating Conversational AI 

In their paper published in 2017, Jadeja and Varia [19] proposed an evaluation model that 

contain four perspectives to evaluate the chatbot’s performance. The perspectives are the 

following:  

The User Perspective:  This perspective focuses on the measurement user satisfaction, 

usability, and other factors. According to them, recognizing the user's expectations, 

maintaining security and trust when private/confidential user data are required, and 

understanding user strategies may improve the following criteria. However, the 

fundamental drawback of this perspective is that it is time and money consuming. 

The Information Retrieval Perspective: The measurement of the accuracy of 

information provided by the chatbot as well as the reaction time, or how quickly a user's 

input is processed, is the main goal of this perspective. According to them, the 

Information Retrieval Perspective is an important evaluation factor, but high IR 

qualities do not necessarily make users happy and satisfied, because user experiences are 

impacted by a variety of factors. 

The Linguistic Perspective: It focusses on the measurement of four factors related to a 

chatbot's linguistic ability. First, the quality, which refers to how accurate the agent's 

phrases are. Second, the quantity of information, which evaluates how much information 

the bot provides. The third relation is to analyze how closely the responses are connected 

to the topic. Finally, the manner, which examines how direct and straightforward the 

conversation is in general. 

the AI perspective:  the measurement of the chatbot’s human like interaction abilities is 

the main objective of this perspective. It can be made using the Turing Test. This 

perspective permits to improve problem solving and influencing skills of a chatbot. 

 Evaluating Quality of Chatbots and Intelligent Conversational Agents 

Radziwill and Benton [20] reviewed 32 paper and 10 articles concerning chatbots 

evaluation methods in their research released in 2017, to identify the quality attributes of 

chatbots. After reviewing these papers and articles, they concluded that the evaluation 

methods are generally linked with the ISO 9214 notion of usability. The ISO 9214 defined 
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the usability as the effectiveness, efficiency, and satisfaction with which specific users 

achieve particular goal in specific environments. the effectiveness of chatbots is related 

to the accuracy and completeness with which users achieve their goals. efficiency is 

defined as how well resources are applied to achieve these goals. Satisfaction is the need 

to guarantee that customers are satisfied.  

Based on this three categories, they defined an evaluation model that they employed to 

evaluate and compare the quality of two different versions on the same chatbot, to verify 

which of them is better. The evaluation model is the following: 

The Efficiency: They specified five quality attributes that permits to measure a chatbot's 

efficiency: Graceful degradation, Robustness to manipulation, Robustness to unexpected 

input, Avoid inappropriate utterances and Effective function allocation 

The Effectiveness: The effectiveness is divided into two sub-groups:  

The functionality: It can be measured using quality attributes such as accurate speech 

synthesis, accurate command interpretation, linguistic accuracy, overall ease-of-use, and 

on-the-fly problem solving.  

The humanity: It contains quality attributes such as passing (or failing) the Turing test, 

being transparent to inspection, including error for increased realism, and answering 

particular questions. 

The user satisfaction:  It is also divided into three categories:  

The affect: It includes attributes like greetings and expressing personality, offering 

conversational cues, providing emotional information, demonstrating warmth and 

sincerity, making tasks more fun and engaging, and reading the mood.  

The Ethics and behaviors: This attribute can be evaluated using the following quality 

attributes: Respect, preservation of dignity, users’ ethics and cultural knowledge, privacy 

protection and respect, non-deception, sensitivity to safety and social concerns, 

trustworthiness, and awareness of trends and social context.  

The accessibility:  It includes quality attributes such as a response to social cues, intent 

recognition, and response to diverse needs.  
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 On Evaluating and Comparing Open Domain Dialog Systems 

In their 2018 study, Venkatesh et al. [21] proposed six different metrics for evaluating the 

open-domain conversational agents (socialbots) built for the Alexa Prize. They rejected 

the Turing tests in their study because they did not believe that this was a suitable method 

to evaluate chatbots, as AI chatbots may not behave as humans in some cases, but they 

can lead a good conversation, and also because the primary objective is to evaluate the 

conversational experience that a chatbot can provide without a human likely behavior. 

The six metrics are the following: 

The conversational user experience: They defined four elements based on user 

experience to evaluate the conversational user experience. First, the user expectation, 

which includes the chatbot's friendly presence and accuracy in responding to user input. 

Second, the chatbot’s behavior and sentiments. third, there is security and trust. Finally, 

the measurement of how effectively the chatbot manages the absence of Visual Cues and 

Physicality. 

The engagement: It measures the degree of interest in a conversation. In other words, 

how engaged a user is in the conversation. 

The coherence: It evaluates the chatbot's ability to understand user messages and provide 

accurate answers. 

The domain coverage: This metric measures the number of domain a chatbot can 

perform. A domain-specific conversation agent may be more like goal-directed chats, 

where the output answer space is constrained. An agent that can operate across multiple 

domains is more likely to be consistent with human expectations.  

The conversational depth: It computes the average number of consecutive turns on a 

given thematic domain. It is critical to detect the context and depth of the discussions 

while evaluating chatbots. Human conversations typically delve deeper into a specific 

topic. An agent who can capture topical depth may seem more natural. 

Topical diversity/conversational breadth: This metric evaluates a conversational 

agent's capacity to detect topics and keywords from a given utterance, to have 

conversations around the same topics and to share relevant concepts, and to recognize 

appropriate user intent.  
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 Evaluating and Informing the Design of Chatbots 

Jain et al. [22] focused on an HCI human-computer interaction perspective in their study 

published in 2018, to evaluate chatbots. To do this, they recruited a group of people with 

no prior experience with chatbots and instructed them to interact with chatbots for three 

days. During these three days, Jain et al. gathered the quantitative data listed below: 

The total interaction time: It focuses on calculating how much time a user spends 

interacting with chatbots.  

The message count: It measures the total of messages exchanged between a participant 

and the chatbot. 

The interactive elements: It focuses on analyzing the amount of inerractive features 

provided by the chatbot during the conversation, such as buttons. 

At the end of the three days, they asked participants via interviews to answer certain 

questions on their experience with the chatbots, from which they highlighted the most 

important users’ comments regarding the chatbots. Based on these comments, they were 

able to define the following attributes that permit to evaluate chatbots performance:  

The functionality: This element focuses on how well the chatbot performed in 

completing its primary task. 

The conversational intelligence: It measures the chatbot's human-like interaction skills 

as well as its accuracy in understanding user input. 

The chatbot personality: It focuses on examining the personality traits of a chatbot. 

According to Jain et al., participants preferred chatbots with distinct personalities. They 

expected the chatbot's personality to be consistent with its domain. 

The chatbot interface: This attribute evaluates the interface that participants used to 

interact with the chatbots. 
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 A Survey on Evaluation Methods for Chatbots 

Maroengsit et al. [23] reviewed 30 publications representing chatbots from various areas 

(such as e-commerce, health, and open-domain), 17 of which included evaluation 

methods, in their paper published in 2019. They concentrated on evaluation 

methodologies and came up with three key categories: 

The Content Evaluation: It covers both automatic evaluation using text summarization 

methods, or expert evaluation where humans are needed to perform what scripts cannot.  

The User Satisfaction: This category focuses on methods that ask users about their 

thought of their interaction with the chatbot. It is also divided into Turn Evaluation and 

Session Evaluation based on whether users are asked about their interaction after each 

question or only at the finish.  

Functional evaluation: It includes other approaches such as task-based evaluation, 

which is popular with goal-oriented chatbots, usage statistics, and evaluation as a building 

block. 

 Can we Improve the User Experience of Chatbots with Personalisation? 

Duijst [24] developed an evaluation model to assess and compare several versions of the 

same chatbot in her study published in 2017. The assessment approach was based on user 

experience. After recruiting a group of users to test the functionality of the chatbot 

versions, she utilized a combination of quantitative and qualitative research 

methodologies to evaluate and compare the quality of the different chatbot versions from 

user testing. 

Quantitative data: Surveys were conducted to gather quantitative data. After testing the 

chatbot's functioning, participants were invited to use a questionnaire to evaluate three 

chatbot’s quality dimensions (usefulness, usability, and user satisfaction) by responding 

to the list of items related to each dimension using Likert scales. Finally, the survey 

responses were statistically analyzed in order to evaluate and compare the quality of 

different chatbot versions. 

Qualititative data: Observations and interviews were used to collect qualitative data. 

During the testing of the chatbot's functionality, the participants were observed by the 
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researcher, allowing the researcher to take notes on the users’ experiences. After testing 

the chatbot's functionality, the researcher conducted a semi-structured interview with the 

tester. 
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3. The evaluation Model 

Almost all of the reviewed research that aims to evaluate and compare the performance 

and quality of chatbots did not provide a general framework that can be applied to all type 

of chatbots. However, they developed different evaluation approaches that concentrated 

on quality dimensions related to their study and the type of chatbot they were examining. 

Although these studies used different approaches to evaluate the performance of chatbots, 

the majority of them defined the user experience perspective as an important chatbot 

evaluation perspective. Because, chatbots are mainly used to communicate with humans. 

This user experience perspective necessarily requires human testers to interact with the 

chatbot. Then, multiple approaches are used to collect data from user testing in order to 

evaluate the chatbot quality, such as the quantitative approach through surveys and 

statistical analysis, the qualitative approach through interviews, or the combination 

of both quantitative and qualitative methods.  

Because most reviewed studies considered the user experience as an essential chatbot 

evaluation perspective, we decided to develop a general evaluation model based on user 

experience to assess and compare the quality of chatbots. 

3.1. Evaluation model Overview 

This evaluation model includes ten chatbots quality dimensions: Usefulness, Ease-of-use, 

Efficiency, Effectiveness, User satisfaction, Personality and humanity, Responses in 

unexpected situations, Response time, Security and privacy, and Visual appearance. It 

requires first the use of human participants to test the functioning of the chatbot. Then, in 

order to evaluate the quality of chatbots, a quantitative approach is used to collect data 

from user testing by conducting a survey with these testers, in which they are asked to 

evaluate each dimension via a questionnaire. In this questionnaire, a set of linked items 

with a Likert scale from 1 to 5 (1-Strongly disagree, 2-Disagree, 3-Neutral, 4-Agree, and 

5-Strongly agree) are used to assess the quality of every dimension. 

The goal of this evaluation model is to help developers, researchers, and companies not 

only to evaluate chatbots but also to compare different chatbots and different versions of 
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the same chatbot, allowing them to have a general overview about the quality of chatbots 

they wish to evaluate or to compare.  

 Evaluate the quality of chatbots 

After the survey is done, statistical analysis must be applied on the survey findings to 

calculate the overall average of the entire chatbot system as well as the overall average 

for each dimension. The overall quality of the chatbot or the quality of each dimension is 

considered very poor when the average is less than 2, poor when the average is between 

2 and 3, satisfactory when the average value is between 3 and 4, and good when the 

overall is more than 4. 

 Comparing the quality of chatbots 

To compare the quality of many versions of the same chatbot or different chatbots, our 

evaluation model must be applied to each one of them with the same number of testers to 

evaluate their performances. Then, the overall averages and dimension averages can be 

compared between chatbots. T-test [25] or ANOVA test [26] must also be conducted to 

measure whether the difference in averages between bots is significant or coincidental. 

When the number of chatbots to compare and the number of groups to test each of them 

is equal to two, the t-test is required. However, the ANOVA test is needed when the 

number of chatbots to compare and the number of groups to test each of them is greater 

than two.  
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3.2. Evaluation model dimensions 

In this section, the dimensions of the evaluation model are described. 

 

Figure 3.1: The dimensions of the evaluation model 

 Usefulness 

The technology acceptance model (TAM) [27] developed by Davis in 1985 is one of the 

most well-known models of technology adoption. Perceived usefulness and perceived 

ease-of-use are the two major factors that determine technology acceptance, according to 

TAM. The extent to which a technology is considered to increase a potential user's 

performance is referred to as perceived usefulness. The usefulness is one of the dimension 

used by Duijst [24] to evaluate the quality of chatbots. 

The TAM consists of ten items that can be used to measure a product's usefulness. To 

evaluate the usefulness of chatbots, we adapted from TAM the two items that are the most 

strongly related to our study. 

Usefulness_1: Using this chatbot can help me complete tasks faster. 

Usefulness_2: I find this chatbot useful. 
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 Ease-of-Use 

According to TAM [27], perceived ease-of-use is one of the two primary factors that 

affect technology acceptance. It is defined as the amount of effort necessary to effectively 

use a technology usefulness. The ease-of-use is one of the quality attributes that was 

defined by Radziwill and Benton [20] to evaluate chatbots.  

TAM contains 10 items to measure a product's ease-of-use. We adapted the three items 

that are the most strongly related to our study from TAM to evaluate the Ease-of-use of 

chatbots.  

Ease-of-Use_1: I find the chatbot easy to use. 

Ease-of-Use_2: I find it easy to let the chatbot do what I want it to. 

Ease-of-Use_3: Learning how to use the chatbot was easy for me. 

 Effectiveness 

Radziwill and Benton [20] defined the effectiveness of chatbots as the accuracy and 

completeness with which users achieve their goals. We used the following items to 

evaluate the effectiveness of a chatbot. 

Effectivness_1: I felt that the chatbot understood all my intentions. 

Effectivness_2: I was able to reach my goal thanks to the chatbot. 

Effectivness_3: The chatbot understands exactly what I want and helped me to achieve 

my objective. 

 Efficiency 

The efficiency refers to working as best as possible while wasting the least amount of 

time and effort [20]. We created the following items to evaluate a chatbot's efficiency. 

Efficiency _1: The chatbot only provides me the amount of information I need. 

Efficiency _2: The amount of information exchanged between me and the chatbot was 

adequate. 
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Efficiency _3: I reached my goal without too many exchanges. 

 Visual appearance 

The visual look of a chatbot is an important factor that affects the quality standard of its 

implementation. Because, humans often judge a book by its cover [18]. 

We adapted the item used by Kuligowska [18] to evaluate the aesthetic look of a chatbot 

due to the importance of this factor. 

Visual_appearance_1: I liked The visual look of the chatbot. 

 Responses in unexpected situations 

According to Kuligowska [18], a chatbot should be able to respond to unexpected 

situations intelligently, politely, and patiently. Typos, misspellings, colloquialisms, and 

insults must all be recognized by a chatbot. It must also recognize the lack of information 

on a specific question and try a variety of creative solutions to overcome the user's 

ignorance. 

The three first items used to measure chatbot responses in unexpected situations were 

adapted from those used by Kuligowska [18] to evaluate the chatbot responses in 

unexpected situations. We created the fourth item. 

Responses in unexpected situations_1: The chatbot was able to recognize and overcome 

the lack of information on a specific question. 

Responses in unexpected situations_2: The chatbot was able to overcome typos and 

misspellings.  

Responses in unexpected situations_3: The chatbot was able to overcome insults and 

humiliations. 

Responses in unexpected situations_4: The chatbot handled well the interruptions during 

the conversation. 
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 Personality and humanity 

According to Kuligowska [18], chatbots must be equipped not only with expertise, but 

also with the ability to express personality in order to become convincing in the eyes of 

users. The personality and humanity also were both defined in the evaluation model 

developed by Radziwill and Benton [20]. We developed three items to measure 

personality and humanity. The first item was used by Kuligowska [18] to evaluate 

personality in her research. 

Personality and humanity_1: The chatbot has a very rich personality. 

Personality and humanity_2: The chatbot was friendly. 

Personality and humanity_3: I had the impression that I was chatting with a real person. 

 Response time 

The response time is the amount of time it takes for a system to respond to a request or 

an interaction. In other words, the chatbot response time is the time that the chatbot takes 

to respond to the user's inputs. The response time, or how quickly a chatbot responds, was 

defined as an essential Information retrieval chatbot evaluation attribute in the research 

created by Jadeja and Varia [19]. 

We created the following items to evaluate the response time: 

Response time_1: The chatbot responds quickly. 

Response time_2: The response time was acceptable. 

 Security and privacy 

According to Venkatesh et al. [21] and Jadeja and Varia [19] security is an important 

chatbot quality attribute. Because, security is vital for users especially when the chatbot 

is handling private or confidential data. Therefore, a higher level of trust can be built, if 

users believe that the chatbot is secure. Radziwill and Benton [20] defined the protection 

of privacy as an important quality attribute that can improve the user’s satisfaction. 

We created these two items to evaluate the security and privacy. 

Security and Privacy _1: This chatbot was able to maintain my privacy. 
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Security and Privacy _2: The interaction with the chatbot seemed secure. 

 User satisfaction 

Finally, the last dimension to evaluate in our evaluation model is the user’s satisfaction 

or how the user feels about his experience with the chatbot. Most of the reviewed research 

defined the user satisfaction as one of the most important attribute to evaluate chatbots. 

We adapted three items from the elements used by Duijst [24] to measure user’s 

satisfaction in the questionnaire she developed.  

User satisfaction_1: This chatbot is fun to use. 

User satisfaction_2: I am satisfied with this chatbot. 

User satisfaction_3: I would recommend this chatbot to a friend. 

 

The dimensions and items of the proposed model are listed in the table below:    

Dimensions/Attributes Items 

Usefulness 

 Usefulness_1: Using this chatbot can. 

help me complete tasks faster. 

 Usefulness_2: I find this chatbot 

useful. 

Ease-of-use 

 Ease-of-Use_1: I find the chatbot easy 

to use. 

 Ease-of-Use_2: I find it easy to let the 

chatbot do what I want it to. 

 Ease-of-Use_3: Learning how to use 

the chatbot was easy for me. 

Effectiveness 

 Effectivness_1: I felt that the chatbot 

understood all my intentions. 

 Effectivness_2: I was able to reach my 

goal thanks to the chatbot. 
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 Effectivness_3: The chatbot 

understands exactly what I want and 

helped me to achieve my objective. 

Efficiency 

 Efficiency _1: The chatbot only 

provides me the amount of 

information I need. 

 Efficiency _2: The amount of 

information exchanged between me 

and the chatbot was adequate. 

 Efficiency _3: I reached my goal 

without too many exchanges. 

Visual appearance 
 Visual_appearance_1: I liked The 

visual look of the chatbot. 

Responses in unexpected situations 

 Responses in unexpected situations_1: 

The chatbot was able to recognize and 

overcome the lack of information on a 

specific question. 

 Responses in unexpected situations_2: 

The chatbot was able to overcome 

typos and misspellings. 

 Responses in unexpected situations_3: 

The chatbot was able to overcome 

insults and humiliations.  

 Responses in unexpected situations_4: 

The chatbot handled well the 

interruptions during the conversation. 

Personality and humanity 

 Personality and humanity_1: The 

chatbot has a very rich personality. 

 Personality and humanity_2: The 

chatbot was friendly. 
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 Personality and humanity_3: I had the 

impression that I was chatting with a 

real person. 

Response time 

 Response time_1: The chatbot 

responds quickly. 

 Response time_2: The response time 

was acceptable. 

Security and privacy 

 Security and Privacy _1: This chatbot 

was able to maintain my privacy. 

 Security and Privacy_2: The 

interaction with the chatbot seemed 

secure. 

User satisfaction 

 User satisfaction_1: This chatbot is 

fun to use. 

 User satisfaction_2: I am satisfied 

with this chatbot. 

 User satisfaction_3: I would 

recommend this chatbot to a friend. 

Table 3.1: The items of the evaluation model 
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4. Implementation 

For our study, we developed a chatbot demo that allows flight company customers to 

purchase flight tickets and manage their reservations. Then, we created two versions of 

this chatbot to test if sentiment analysis can improve the chatbot quality. The first version 

cannot analyze the user sentiment, whereas the second is an improved version that can 

analyze the feelings and respond accordingly. Finally, we integrated these chatbots into 

two similar web applications that we implemented so that human testers could interact 

with both versions. 

In this chapter, we will describe in details the implementation of the second version 

because both versions are extremely similar in terms of architecture and functioning, 

except that the first cannot analyze sentiment and respond accordingly, while the second 

can. 

4.1. General use case 

  

 

Figure 4.1: General use case diagram 
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4.2. System architecture 

 

Figure 4.2: The system architecture 

 Rasa framework 

The Rasa framework was used to develop the chatbot demo. The following sections cover 

all aspects of the demo's implementation. 

4.2.1.1. NLU module 

The NLU module is responsible for NLU prediction such as intents detection, entities 

recognition and slots extraction. All these intents, entities and slots are defined in the 

domain.yml file.  

 Data structure: 

The following are the most important Intents that we used in our implementation with the 

required entities/slots that need to be extracted when detecting these intents. Other intents, 

entities, and slots were also implemented, but they are not covered here for the sake of 

brevity. 
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Main Intents: 

Intent Description 

inform_Book 

This intent indicates that the user wants to 

be notified about potential flight 

opportunities. When this intent is 

recognized, the chatbot will provide all 

the necessary details and suggest the user 

book the flight if desired. If he confirms, 

the chatbot gathers his personal and his 

payment details in order to book this 

flight for him. 

modify_travel_date 

This intent indicates that the user wants to 

modify the travel date of a flight he has 

already booked. 

modify_return_date 

This intent indicates that the user wants to 

change the return date of a flight he has 

already booked. 

cancel _flight 
It means that the user wants to cancel his 

booking. 

cancel_return _flight 
It indicates that the user wants to cancel 

the return flight only. 

Make_claim 

Make_claim: This intent indicates that the 

user wishes to make a claim about 

something. 

Table 4.1: Main Intents 
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Main Entities: 

Entity Description 

city 

City is the entity responsible for the 

extraction of the name of the city from 

user input. 

date 
This entity is responsible for the extraction 

of date from user messages. 

sentiment 
It is in charge of the extraction of user 

sentiment from his sentences. 

Table 4.2: Main entities 

Main slots:  

Slot Type Mapping(extracted 

from) 

Description 

departure_city Text Entity: city 

This slot stores the 

departure city entered by 

the user. It is filled when 

the entity city is detected. 

arrival_city Text Entity: city 

It saves the departure city 

sent by the user. It is filled 

from the city entity. 

travel_date Text Entity: date 

It stores the user travel 

date. It is filled when the 

entity date is recognized. 

return_date Text Entity: date 

It saves the user-specified 

return date. It is filled when 

the entity date in the user 

input is detected. 

price Text Custom 

This slot is automatically 

filled with the flight cost 

by a custom action after the 

user has already selected 
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the travel date and return 

date. 

passport_id Text From user text 
It Is the slot that saves the 

user passport Id. 

full_name Text From user text It stores the user full name. 

electronic_card_type Text From user text 
It stores the user electronic 

card type. 

electronic_card_number Text From user text 
This slot saves the user 

electronic card number. 

cvv_number Text From user text 
It stores the user electronic 

card CVV number. 

expiration_date Text Entity: date 

This slot stores the user 

electronic card expiration 

date. It is filled when the 

entity date is recognized. 

SMS Text From user text 

This slot saves the secret 

code of the SMS sent to the 

electronic card owner in 

order to secure the 

payment. 

ticket_id Text 
Custom/ From user 

text 

 This slot is 

automatically filled by a 

custom action once the 

user purchases a ticket. 

 It is filled from user text 

when the user wishes to 

modify the travel date, 

modify the return date, 

cancel a flight , cancel 

the return flight, or make 

a claim. 
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claim_subject Text From user text 
It stores the subject of the 

user's claim. 

sentiment Text Entity: sentiment 

This slot stores the user 

sentiment. It is filled from 

the entity sentiment. 

Table 4.3: Main slots 

 NLU components: 

The NLU module is implemented as a pipeline that processes the input text in a series of 

steps called components. Each component of the pipeline is run in turn, and the output of 

each is available to the next. All pipeline steps are defined in the config.yml file. 

The pipeline steps or components that we used in our implementation are defined in 

config.yml file as shown in figure 4.3. 

 

Figure 4.3: The pipeline steps 

The first component,” sentiment analyzer”, is a Custom Graph Component, while the 

others are predefined by Rasa. All of the components we used are described below. 

Sentiment analyzer: 

We had to create a new Custom Graph Component that allows the NLU components to 

extract the user sentiment from his messages. Because, Rasa NLU does not provide a 

predefined NLU component that allows to analyze user sentiment. For this reason, we 
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first created a Python file called “sentiment.py”. In this file, we implemented a class 

named “Sentimentanalyzer” that includes the Custom Component's code. This class 

contains two primary methods: “process” and “covert_to_rasa”. The “process” analyzes 

the user sentiment using the Vadersentiment sentiment analyzer included in the “NLTK” 

library. This method returns a string that can be “neutral”, “negative”, or “positive”, as 

shown in figure 4.4 and 4.5 below. The “convert_to_rasa” method, on the other hand, 

indicates to the NLU module that the sentiment is extracted as an entity. Finally, we 

referenced this Custom Component in the NLU pipeline of the config.yml file. As a result, 

after the training process is complete, the NLU module will be trained to predict the user 

sentiment based on his input and to extract this sentiment as an entity. 

 

Figure 4.4: Neutral user sentiment 

 

 

Figure 4.5: Negative user sentiment 



Implementation 

61 
 

 

Figure 4.6: Discussion without sentiment 

analyzer 

 

Figure 4.7: Discussion with sentiment analyzer 

 

As seen in Figure 4.6, a chatbot without a sentiment analyzer will ignore the user's 

sentiment and continue with the process. On the other hand, if negative user sentiment is 

detected at any point throughout the conversation utilizing the sentiment analyzer, as 

illustrated in figure 4.7, the chatbot's answers will be more empathetic and the chatbot 

will take a new path as seen in figure 4.8. In this new path, it asks the user if he is unhappy 

about something. Then, it offers him a discount on booking or a discount code that can 

be used in free duty shops to try to change his mood. 
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Figure 4.8: Conversational user/bot flow for sentiment analysis 

Predefined components: 

The predefined NLU components that we used in our implementation are: 

- WhitespaceTokenizer: We used the WhitespaceTokenizer component to create 

a token for every whitespace separated character sequence from the user’s 

sentence. 

- LexicalSyntacticFeaturizer: We used this component to provide lexical and 

syntactic features for a user’s message, in order to assist entity extraction. 

- RegexFeaturizer: We used the RegexFeaturizer to create features for entity 

extraction and intent classification. 

- CountVectorsFeaturizer: It was used to create intent classification and response 

selection features.  

- DIETClassifier: We used the Dual Intent Entity Transformer (DIET) used for 

intent classification and entity extraction.  
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- EntitySynonymMapper: This component is used to ensure that identified entity 

values are mapped to the same value if the training data contains defined 

synonyms. 

- Response Selector component: We utilized the Response Selector component 

for the creation of the dictionary with the key representing the response selector's 

retrieval intent and the value containing predicted responses, confidence, and the 

response key.  

- FallbackClassifier: We used the FallbackClassifier to Classify a message with 

the intent nlu_fallback if the NLU intent classification scores are ambiguous. We 

set the threshold to 0.6 which means if the confidence on an intent is less 0.6, the 

chatbot will respond to the user that his message was unclear and that he needs to 

rewrite his message in a clear manner.  

4.2.1.2. Rasa Core 

Rasa core is the part of Rasa that is in charge of predicting and executing the next action 

based on the data retrieved by the Rasa NLU module. This action might be a simple 

response, a custom action, or a form. The most important forms and custom actions that 

we implemented are as follows: 

 Forms:  

A form contains a series of slots that represent the data that must be collected. Once 

activated, it will keep requesting the user to fill in all required slots using the list of slot 

utterances defined in the domain.yml until all are filled. Rasa forms are highly useful in 

operations such as booking that need the gathering of a set of data from the user.  

The most important forms that we implemented are described below in more details: 

Form Description Main Required slots 

inform_book_form 

This form is in charge of 

gathering the slots that need 

to be filled during the 

inform process and the 

booking process. Because, 

 departure_city 

 arrival_city 

 travel_date 

 return_date 

  price  
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every user must be first 

informed about the flights 

opportunities, the total 

price of the booking, and 

the payment opportunities. 

Then he will be asked if he 

is still interested about the 

offers and wants to book. 

When he confirms, the 

chatbot starts the booking 

process and asks the user to 

enter his personal data and 

the data related to the 

payment. 

 Passport_id 

 full_name 

 electronic_card_type 

 electronic_card_number 

 cvv_number 

 expiration_date 

 SMS 

modify_travel_date_form 

This form is in responsible 

of gathering the slots that 

need to be filled during the 

modification of the travel 

date of an already booked 

flight. 

 travel_date 

 ticket_id 

modify_return_date_form 

It is responsible for 

collecting the slots that 

need to be filled during the 

modification of the return 

date of an already booked 

flight. 

 return_date 

 ticket_id 

cancel_flight_form 

This form gathers the slots 

that need to be filled during 

the cancel flight operation. 

 ticket_id 

cancel_return_flight_form 
This form collects the slots 

that need to be filled during 

 ticket_id 
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the cancel return flight 

operation. 

make_claim_form 

It gathers the slots that need 

to be filled during the claim 

process. 

 ticket_id 

 claim_subject 

Table 4.4: Main forms 

 Custom actions: 

Custom actions are required when the next action is more complex than a simple action. 

All the custom actions are implemented in action.py file and they are executed by the 

Action Server. This Action Server runs independent of the NLU module and the Rasa 

core. It is called every time Rasa Core predicts a custom action to be executed. 

The most important custom actions that we implemented are the following: 

Custom action Description 

validate_booking_form 

This is the custom action that was implemented 

to verify the values of all the required slots of 

the “inform_book_form” before validating 

them. If the value of the slot does not fit the 

constraints set in this custom action, the user 

will be asked to enter it again. 

validate_modify_travel_date_form 

It verifies all the required slots of the 

“modify_travel_date_form” and validates them 

only when they match certain constraints. 

validate_ 

modify_return_date_form 

It checks all the required slots of the 

“modify_return_date_form” and validates 

them only when they match certain constraints. 

validate_ cancel_flight_form 

It verifies all the required slots of the 

“cancel_flight_form” and validates them only 

when they match the constraints defined in this 

custom action. 
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validate_ 

cancel_return_flight_form 

It checks all the required slots of the 

“cancel_return_flight_form” and validates 

them only when they match certain constraints. 

validate_ claim_form 

It checks all the required slots of the 

“claim_form” and validates them only when 

they match certain conditions specified in this 

custom action. 

submit_booking 

This custom action is always executed once the 

booking operation is finished. It eventually 

generates the ticket Id, displays a booking 

confirmation with all booking details, and 

stores the booking in the database when the 

booking is confirmed by the user. 

submit_modify_travel_date 

This custom action is performed once the travel 

date modification process is over. It displays a 

confirmation message, and stores the 

modification in the database when the 

modification is confirmed by the user. 

submit_modify_return_date 

This custom action is executed once the return 

date modification operation is over. When the 

modification is confirmed by the user, it shows 

a confirmation message, and stores the 

modification in the database. 

submit_cancel_flight 

It is executed after the cancel flight process is 

over. Once confirmed by the user, it shows a 

confirmation message, and removes the 

booking from the database. 

submit_cancel_return_flight 

It is executed after the cancel return flight 

operation is finished. Once confirmed by the 

user, it shows a confirmation message, 

modifies the booking to a one- way flight and 

stores the modification in the database. 
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submit_claim 

This custom action is executed once the claim 

operation is finished. When the claim is 

confirmed by the user, it shows a confirmation 

message, and stores the claim subject in the 

database. 

Table 4.5: Main custom actions 

 Policies: 

 

 

Figure 4.9: The policies 

Rasa Core uses the concept of policies to specify how the next action is chosen.  

We used mainly the the RulePolicy to predict the next action based on the rules provided 

in training data. To handle cases when the policies cannot predict the next action with 

high confidence, we set the core_fallback_threshold to 0.6, as shown in figure 4.9. In that 

way, it sends a message to the user saying that his input was unclear and reverts back to 

the state of the conversation before the user’s message that caused the fallback, when the 

next action confidence is less than 0.6.  

We used also the Transformer Embedding Dialogue (TED) Policy to predict next actions 

and to recognize entities.  
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4.2.1.3. Training data 

The data provided in the training data is used to train the NLU module and the Rasa core.  

 Rasa NLU Data: 

To make NLU prediction, the chatbot must train The Rasa NLU module using NLU 

training data. NLU training data consists of examples of user’s utterances categorized by 

intent. This generally includes any entities contained in his message. The nlu.yml file, in 

the data folder that Rasa creates, contains all of the NLU training data. 

To train the NLU module to make NLU prediction, we defined in nlu.yml file all intents 

that exists in the domain.yml with the possible user’s utterance related to these intents. 

We defined also the possible entities that all these utterances could contain. Rasa uses a 

proprietary format for training data based on Markdown. We trained the NLU module 

using more than 1500 examples for different intents. 

 Rasa Core data: 

The Rasa Core can be trained to predict the next action using rules and stories. Rules 

describe short pieces of conversations that should always follow the same path. It links a 

user's intent to one or more actions. An action could be a simple response, a custom action 

or a form. The Rules can recognize intents or actions (response, custom action or form) 

only if they are defined in the domain.yml file. If the action used in a Rule is a form, the 

chatbot will keep requesting the user to fill up all of the form's required slots. All 

necessary rules must be defined in the Rasa rules.yml in the Data folder. 

We used Rules to train our chatbot to predict the next actions. We utilized more than 150 

rules that we defined in the rules.yml. We created rules that link all intents with all 

possible actions related to these intents. We employed these rules to manage all possible 

happy paths, user’s interruptions and NLU Fallbacks. 
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4.2.1.4. Rasa HTTP API 

After completing the implementation of the different modules of our demo and training 

both the NLU module and Rasa Core using the training data, we ran the chatbot using the 

command line “rasa run –enable api” to activate the Rasa HTTP API, allowing front end 

clients to communicate with the chatbot through HTTP. 

 Front end client 

 

Figure 4.10: The user interface 

The front end client uses the web browser to interact with the chatbot via HTTP. We 

utilized the Python web framework Flask to develop the necessary web services and to 

run the web server. This will allow users to interact with the chatbot via web browser 

using a web page named “booking.html”. We inserted the package Rasa_Chatbot_UI 27 

in booking.html. This package consists of CSS and JS files. It creates a chat user interface 

and facilitates the interaction with a running Rasa server. 

We executed Ngrok using the command line “Ngrok<port where our web application is 

running>” to create an URL address that can be used by users to remotely access our web 

application running on localhost to interact with the chatbot. 

                                                           
27 https://elysian01.github.io/Rasa-Chatbot-UI/ 

https://elysian01.github.io/Rasa-Chatbot-UI/


Implementation 

70 
 

 Database: 

For our implementation, we created a SQLite database named “bookings”. It contains a 

table named “Reservation” where all bookings are stored. Every line of this table contains 

all the information related to a booking such as the ticket Id, the customer full name, the 

passport Id, the electronic card type, the electronic card number, the departure city, the 

arrival city, the travel date, the return date, and the claim subject. 

4.3. Main tasks and conversational user/bot flow 

This section contains the description of every process presented in the use case. For each 

process, the main scenario and the corresponding conversational user/bot flow 

are explained in details. 
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 Inform 

 

Figure 4.11: Conversational user/bot flow for Inform process 
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Figure 4.12: Inform about a flight 

 

Figure 4.13: Multiple information entered by 

the user in a single message 

The user may communicate with the chatbot to inform about potential flight possibilities, 

as seen in figure 4.12. At that point, the form “inform_book_form” is launched to gather 

all the information needed to fill the required slots related to the inform operation: 

departure_city, arrival_city, travel_date, and return_date if he desires to fly back.  

As shown in figure 4.13, if the user provides a lot of information regarding many slots in 

a single sentence, the chatbot will fill these slots and then asks the user to enter data to 

fill the remaining slots. 

When the user enters the value of a required slot, the custom action 

“validate_booking_form” is called to ensure that the value of that slot adheres to the 

restrictions defined in this custom action: 

It validates the departure and arrival cities entered by the user only if they are both 

European capitals. The user may enter the travel and return dates in whatever format he 

wants, such as "tomorrow" or "21.05.2022", etc. The methods responsible for the 

validation of the travel and the return date in the custom action “validate_booking_form” 

will convert them to the YYYY-MM-DD format using the Python “dateparser” package 

before validating their values. Only travel dates from the current year and at least one day 

after the current day are accepted. The return date is accepted only if it belongs to the 

current year and at least one day after the trip date. 
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Figure 4.14: Booking confirmation 

 

Figure 4.15: Stop the process 

When all of these slots are filled, the chatbot displays the cost of the booking, payment 

options, and asks the user whether he wants to book that ticket and start the payment 

process, as seen in figure 4.14. If the user confirms, the booking process starts to collect 

user personal information and credit card details, and if he declines, the booking form is 

deactivated and the entire process is stopped. 

As shown in figure 4.15, the user can also stop the process at any moment he wants. He 

can also modify all the data he previously entered, as seen in figure 4.16. If the user wants 

to modify the value of a previously filled slot, the chatbot will ask him to enter the 

data that allows him to fill that slot again instead of asking him to fill the next slot. 

 

Figure 4.16: Modify data during the process 

 

Figure 4.17: Bad sentiment detected during the 

inform process 
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As shown in figure 4.17, if negative user sentiment is detected at any point in the process, 

the chatbot's responses will be more empathetic, and the chatbot will not ask the user to 

provide the data required to fill the next slot, but will instead take a new path where it 

asks the user if he is unhappy about something and offers him a discount on booking to 

try to change his mood. 

 Booking 

 

Figure 4.18: Conversational user/bot flow for booking process 
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Figure 4.19: Start of payment process 

 

Figure 4.20: Payment and confirmation 

When the user confirms that he wishes to purchase a plane ticket, the booking procedure 

starts to gather the user's personal information and payment information, as shown in 

figure 4.19. The “inform_book_form” will continue to ask the user to provide further 

information to fill the remaining slots: full_name, passport_id, electronic_card_number, 

cvv_number, expiration_date, and SMS. When a user enters the value related to a slot, 

the custom action “validate_booking_form” is called to ensure that the value corresponds 

to the constraints specified in this custom action. 

The followings are the main steps of this process: 

The procedure begins by requesting the user to provide his passport number in order to 

fill the slot “passport_id”. The custom action “validate_booking_form” is executed, when 

the user enters his passport number to check its value. The custom action validates the 

slot value only when the user’s text contains a five-digit number. otherwise, he will need 

to enter his passport number again. 

Then, the user is asked to provide his name in order to fill the slot “full_name”. When the 

user enters his name, the custom action “validate_booking_form” is executed. It extracts 

the human name from a provided text using the Python “Spacy” package. If the user’s 

text is too short, or if the name entered by the user doesn’t exists in the human names 

dictionary of the Python “Spacy” package, the custom action will reject the slot value and 

the chatbot will ask the user to enter the name again. 

After that, the user is asked to enter his electronic card number to fill the slot 

“electronic_card_id”. The custom action “validate_booking_form” is called, to check the 
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text entered by the user. The custom action validates the slot value only when the user 

text contains a twelve-digit number. Otherwise, he will need to enter his electronic card 

number again. 

Next, the user is asked to enter his electronic card cvv number in order to fill the slot 

“cvv_number”. The custom action “validate_booking_form” is executed, to check the 

data entered by the user. This custom action validates the slot value only when the user’s 

input contains a three-digit number. otherwise, he will need to enter his cvv number again. 

After the validation of the ccv number, the user is asked to enter the electronic card 

expiration date in order to fill the slot “expiration_date”. The custom action 

“validate_booking_form” is called, to check the date provided by the user. The expiration 

date is only accepted if the date is at least one day after the current day. Otherwise, he 

will need to enter the expiration date again. 

Then, the chatbot asks the user to provide the secret code of the SMS sent to the electronic 

card owner’s phone in order to fill the slot “SMS” and secure the payment. Since we 

implemented a demo, the user needs only to provide a four-digit number to fill this slot. 

Finally, a message that asks the user if he wants to confirm the payment is displayed. 

When the user confirms the payment, the whole booking process is successfully finished. 

When he refuses, a message that asks him if he is sure that he wants to stop the process 

is displayed. 

When the whole booking process is finished, the “inform_book_form” is deactivated and 

the “submit_booking” custom action is executed. When the user has confirmed the 

payment, this custom action generates a ticket Id (5-digit number), saves the booking in 

the database and displays a booking confirmation message with all reservation details, as 

shown in figure 4.20. When the process is stopped by the user, it displays to him a 

message saying that the booking process is stopped. 

Before the payment confirmation, the user can also stop the process at any stage he wants, 

or modify all the data he previously entered. If the user wants to modify the value of a 

previously filled slot, the chatbot will ask him to enter the data that allows him to fill that 

slot again instead of asking him to fill the next slot.  
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If negative user sentiment is detected at any point in the process, the chatbot's responses 

will be more empathetic, and the chatbot will not ask the user to provide the data required 

to fill the next slot. It will instead ask the user if he is upset about something and offers 

him a discount on booking to try to change his mood. 

 Cancel flight 

 

Figure 4.21: Conversational user/bot flow for cancel flight 



Implementation 

78 
 

 

Figure 4.22: Cancel flight 

 

Figure 4.23: Cancel flight when a negative user 

mood is detected 

As seen in figure 4.22, users can cancel flights they have previously booked by simply 

telling the chatbot that they wish to cancel their bookings. When the chatbot detects this 

intention, it activates the form “cancel_flight_form” and asks the user to enter his ticket 

Id in order to fill the required slot “ticket_id” of this form. The custom action 

“validate_cancel_flight_form” is executed when the user provides the ticket Id. This 

ticket Id entered by the user is validated by this custom action only if it exists in the 

database. Finally, a message is displayed asking the user to confirm the ticket cancellation 

with an affirm and decline buttons. When the user affirms, the operation is successfully 

completed and when he declines the chatbot will ask him, if he wants to stop the process.  

When the whole process is finished, the form “cancel_flight_form” is deactivated and the 

custom action “submit_cancel_flight” is executed. When the user has confirmed the ticket 

cancellation, this custom deletes the booking from the database, alerts the user that his 

flight has been cancelled, and notifies him that he will be reimbursed in the coming days, 

as shown in figure 4.22. When the process is stopped by the user, it displays him a 

message saying that the process is stopped. 

The user has the possibility to stop the process at any moment. If the chatbot recognizes 

that the user is upset at any point during the process, its responses will be more 

empathetic, and will take a new path where it asks the user if he is unhappy about 

something and offers him a discount code for free duty shops to try to change his mood 

and his decision about cancelling the flight, as seen in figure 4.23. The cancel flight 

process cancels the whole reservation, including the return flight. 
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 Cancel return flight 

Users can also cancel return flights. This process is too similar to the cancel flight one. 

But, it cancels the return flight only and not the whole reservation. Once this intent 

detected, the chatbot activates the form “cancel_return_flight_form” to ask the user to 

enter his ticket Id in order fill the required slot “ticket_id” of this form. The custom action 

“validate_cancel_return_flight_form” is executed to validate the ticket Id entered by the 

user. 

When the whole process is completed, the custom action “submit_cancel_return_flight” 

is executed. If the user has confirmed the return flight cancellation, this custom action 

removes the return flight from the database, displays to the user that his return flight has 

been cancelled. Also, it tells him that he will be refunded in the following days. If the 

process is stopped by the user, the chatbot displays him a message saying that the process 

is stopped. 

The user has the possibility to stop the process at any moment. If negative user sentiment 

is detected at any stage in the process, the chatbot's answers will be more empathetic, and 

will take a new path where it asks the user if he is unhappy about something and offers 

him a discount code for free duty shops to try to change his mood and his decision about 

cancelling the return flight. 
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 Modify travel date 

 

Figure 4.24: Conversational user/bot flow for modify travel date process 

 

Figure 4.25: Modify travel date  

 

Figure 4.26: Modify travel date confirmation 

Users can modify the travel date of a flight they have previously booked by simply telling 

the chatbot that they wish to modify the travel date, as shown in figure 4.25. When this 

user intention is detected by the chatbot, the “modify_travel_date_form” is activated to 

ask the user to enter his ticket Id and the new date of travel in order fill the required slots 

of this form: the “ticket_id” and “travel_date”. The custom action “validate_modify_ 

travel_date_form” is executed when the user provides the data to fills these two required 
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slots. The ticket Id entered by the user is validated by this custom action only if it exists 

in the database. The new date of travel entered by the user is only validated if it is from 

the current year, at least one day after the current date, and at least one day before the 

return date if the booking has already a return date. Finally, a message is displayed asking 

the user to confirm the travel date modification procedure with an affirm and decline 

buttons. When the user affirms, the operation is successfully completed and when he 

declines the chatbot will ask him, if he wants to stop the process. 

Once the whole process is completed, the “modify_travel_date _form” is deactivated and 

the custom action “submit_modify_travel_date” is then called. When the user has 

confirmed the travel date modification, this custom action updates the travel date of that 

booking in the database and displays the user that his travel date has been modified, as 

shown in figure 4.26. When the process is stopped by the user, it displays him a message 

saying that the process is stopped. 

The user has the possibility to stop the process at any moment. If negative user sentiment 

is detected at any stage in the process, the chatbot's responses will be more empathetic, 

and will take a new path where it asks the user if he is unhappy about something and 

offers him a discount card for free duty shops to try to change his mood. 

 Modify return date 

Users can also modify return flights date. This process is too similar to the modify flight 

one, but it modifies the return flight date. Once this intent is detected, the chatbot activates 

the form “modify_return_date_form” to ask the user to enter his ticket Id and the new 

return date in order to fill the required slots “ticket_id” and “return_date” of this form. 

The custom action “validate_modify_return_date_form” is executed when the user enters 

the data needed to fill these two required slots. The ticket Id entered by the user is 

validated by this custom action only if it exists in the database and the booked flight has 

a return flight. The new return date entered by the user is validated only if it is from the 

current year, at least one day after the current date, and at least one day after the travel 

date.  

Once the whole process is completed, the custom action “submit_modify_return_date” is 

executed. When the user has confirmed the return date modification, this custom action 
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updates the return date of that booking in the database and displays to the user a message 

to notify him that his return date has been modified. When the process is stopped by the 

user, it displays him a message saying that the process is stopped. 

The user has the possibility to stop the process at any moment. If the chatbot detects that 

the user is upset at any point during the process, its responses will be more empathetic, 

and it will take a new path where it asks the user if he is unhappy about something and 

offers him a discount card for free duty shops to try to change his mood. 

 Make claim 

 

Figure 4.27: Conversational user/bot flow for the claim process 
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Figure 4.28: Make a claim 

 

Figure 4.29: Claim confirmation 

The chatots allows users to make claims. As seen in figure 4.28, when the chatbot detects 

that the user wants to make a claim, the “make_claim_form” is activated to ask the user 

to enter his ticket Id and the subject of his claim in order to fill the required slots of this 

form: the “ticket_id” and the “claim_subject”. The custom action “validate_claim_form” 

is executed when the user enters the data needed to fill these two required slots. The ticket 

Id entered by the user is validated by this custom action only if it exists in the database. 

The claim’s subject entered by the user is validated only if it is not too short (more than 

8 character). Finally, a message is shown asking the user to confirm the claim procedure 

with an affirm and decline buttons. When the user affirms, the operation is successfully 

completed and when he declines the chatbot will ask him, if he wants to stop the process.  

Once the whole process is completed, the “make_claim _form” is deactivated and the 

custom action “submit_claim” is executed. When the user has confirmed the claim, this 

custom action stores the claim in the database and displays to the user a message saying 

that his claim is sent, as shown in figure 4.29. When the process is stopped by the user, it 

displays to him a message saying that the process is stopped. 

The user has the possibility to stop the process at any moment. If negative user feeling is 

detected at any stage of the process, in the same way as when modifying a travel date, the 

chatbot's answers will be more empathetic, and will take a new path where it asks the user 

if he is upset about something and offers him a discount card for free duty shops to try to 

change his mood. 
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5. Research methodology 

For our study, we conducted a survey with a set of participants. In this survey, participants 

were instructed to test the chatbot functioning, then to respond to the questions of the 

questionnaire. We divided these participants into two groups. The first group tested the 

first version of our chatbot while the second tested the second version that can analyze 

sentiment. During, the user testing, testers are instructed, to perform two tasks. The first 

task is a simple task in which they will try to book a plane ticket and answer to the 

question asked by the chatbot until the end of the process. The second task is complex 

task in which testers are instructed to interrupt the conversation, enter complex sentences 

and try to show their sentiments, when interacting with the chatbots. After completing 

these tasks, they were instructed to respond to the questions of the questionnaire. This 

questionnaire contains 27 questions. The first question is demographic that asks them if 

they had a previous experience with chatbots. The other 26 questions represent the items 

of every dimension of our evaluation model. Each tester used the Likert scale from 1” 

Strongly disagree” to 5 “Strongly agree” to respond all the items of each dimension in 

order to evaluate the quality of that dimension.  

This survey at:  

 First, measuring and analyzing the reliability and the validity of the items that we 

created to evaluate each dimension of our evaluation model, which will permit to 

evaluate the reliability and the validity of the entire evaluation model.  

 Second, to determine whether sentiment can improve the chatbot overall quality 

and to identify the improved quality dimensions. Therefore, two hypotheses were 

formed: 

- H1: Users consider that the overall quality of a chatbot that can analyze 

sentiment is better than the overall quality of the same chatbot that does 

not analyze sentiment. 

- H2: If the overall quality of a chatbot has improved using sentiment 

analysis, then the quality of all dimensions improves as well. 
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5.1. The reliability and validity 

Reliability and validity are linked but distinct. Indicators (i.e. items) might be reliable but 

not valid (i.e. accurate), and vice versa. The rate to which a group of two or more 

indicators (i.e. items in a questionnaire) contribute to the measurement of a construct is 

referred as reliability. In contrast, validity is a process that determines how well items 

measure the construct they were supposed to evaluate [28]. 

In this study, we will analyze the items reliability and validity for each construct (i.e. 

dimension in our study) we used in our evaluation model. 

 Reliability 

The Cronbach alpha coefficient is the most frequently used measurement tool to assess a 

construct's reliability. In some researches, a Cronbach alpha coefficient more than 0.70 

and less than 0.90 is recommended to confirm that the items used are reliable. Whereas 

in others, a Cronbach alpha coefficient greater than 0.7 and less than 0.95 is 

recommended. A Cronbach alpha less than 0.70 indicates that the items do not capture 

the construct that they were designed to assess, whereas a Cronbach alpha that is more 

than 0.95 indicates that the items of the construct are highly reliable, implying 

considerable redundancy and one or some of them should be deleted [29].  

In this study, we will calculate the Cronbach alpha coefficient for each dimension to 

analyze the related items reliability.  

 Construct validity 

Construct validity is composed of two distinct but related measures: convergent validity 

and discriminant validity. Both are required to evaluate the construct validity. However, 

neither is adequate by itself to demonstrate construct validity [28].  

5.1.2.1. Convergent validity 

 The degree to which a measure correlates highly with other measures designed to assess 

the same construct is referred to as convergent validity [28]. The primary measurements 

used to measure convergence validity are Composite Reliability (CR) and Average 
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Variance Extracted (AVE). For each construct a Composite Reliability (CR) higher than 

0.7 is recommended while an Average Variance Extracted (AVE) greater than 0.5 is 

recommended [30]. 

In this study, we will compute the Composite Reliability (CR) and Average Variance 

Extracted (AVE) for each quality dimension to analyze the convergent validity of the 

related items. 

5.1.2.2. Discriminant validity 

Discriminant validity is demonstrated when each measurement item is weakly correlated 

with all other dimensions except the one with which the item is associated [31]. 

Heterotrait-Monotrait ratio(HTMT) is one of most frequently used measure to assess the 

discriminant validity. If the HTMT values of all constructs is less than 0.9, the 

discriminant validity is proven [30].  

In our study, we will compute the HTMT score for every quality dimension to assess the 

discriminant validity. 

5.2. Chatbot quality improvement with sentiment analysis 

In order to test the two previously set hypotheses, we will measure and compare between 

the two groups: The overall averages, the averages of each dimension, and the means and 

standard deviations of each item. However, being based on averages only does not allow 

us to confirm that one of the versions is better than the other, since the difference between 

averages could be insignificant and happen by chance. For this reason, we will use the t-

test [25] to identify whether the difference of means between both groups is statistically 

significant to test our hypothesis. 

A t-test is a statistical method to compare the means between two groups. It aims at 

determining if the difference in the means between these groups is significant or 

coincidental. The t-test generates a probability value known as the p-value. If the p-value 

is less than 0.05, it indicates that the difference in means is significant and did not occur 

by chance [25]. 
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5.3. Data collection 

The survey was created with the online tool “Google Forms”. It was accessible online 

from "01.05.2020" until "01.06.2020." The survey was posted in two Facebook groups. 

Both groups consist of computer science students, professors, developers, and 

researchers. In addition, a group of my acquaintances from various fields participated in 

the survey. During the first 15 days of the survey, participants tested the functioning of 

the first chatbot version before being allowed to reply to the questions of the 

questionnaire. During the survey's remaining time, participants assessed the functioning 

of the second chatbot version and then answered the questions of the questionnaire. 
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6. Survey results 

This thesis's results chapter will deal with a quantitative research design. In this chapter, 

we present several statistical analyses of the data collected from our online survey. 

A total of 54 participants participated in the survey. 20 of them answered yes to the 

question “have you chatted with a chatbot before”. The participants were divided into 2 

groups. The first group consists of 27 participants who interacted with our chatbot's first 

version, whereas the second group consists of 27 participants who interacted with our 

chatbot's second version that can analyze sentiment. 

First, based on all the responses of the 54 participants, the reliability and validity of the 

items used in our evaluation model to evaluate each dimension are analyzed to examine 

how effective these items are. Finally, we will measure the means obtained from both 

groups and investigate if the differences in means are statistically significant in order to 

test our hypotheses. 

6.1. Reliability and validity 

In order to measure the reliability and validity of the items used to evaluate each 

dimensions, we use the smartPLS tool. 

 Reliability 

We used Cronbach Alpha to verify the reliability of the items used in our evaluation 

model to evaluate each dimension. A Cronbach Alpha coefficient between 0.7 and 0.95 

is required for each construct or dimension to demonstrate items reliability. All 

dimensions, as shown in Table 6.1, have a Cronbach Alpha coefficient between 0.7 and 

0.95, which is satisfactory and indicates that the items employed in each dimension are 

reliable.  

The Cronbach Alpha is not computed to measure the reliability of the visual appearance 

dimension. Since, it consists of a single item and reliability can only be performed on two 

or more items. Furthermore, a single item is considered as very reliable according to Rost 

et al. [32]. 
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Dimensions Cronbach Alpha 
Composite 

Reliability(CR) 

Average Variance 

Extracted(AVE) 

Usefulness 0832 0.922 0.855 

Ease-of-use 0.800 0.874 0.706 

Effectiveness 0.840 0.900 0.750 

Efficiency 0.817 0.878 0.709 

Responses in 

unexpected 

situations 

0.827 0.862 0.615 

Personality and 

humanity 
0.894 0.920 0.794 

Response time 0.825 0.917 0.847 

Security and 

privacy 
0.731 0.881 0.787 

User satisfaction 0.916 0.947 0.856 

Table 6.1: Cronbach Alpha, Composite Reliability, Average Variance Extracted 

 Validity 

It is composed of two related measures the convergent and discriminant validity. These 

two methods are required to demonstrate the validity of each dimension. 

6.1.2.1. Convergent validity 

We used both Composite Reliability (CR) and the Average Variance Extracted(AVE) to 

analyze the convergent validity of the items used in our evaluation model to evaluate each 

dimension. To demonstrate items convergent validity, each construct or dimension must 

have a Composite Reliability score higher than 0.7 and an Average Variance Extracted 

coefficient greater than 0.50. As shown in Table 6.1, all dimensions have a Composite 

Reliability score higher than 0.7 and an Average Variance Extracted coefficient greater 

than 0.50, indicating that the convergent validity of the items used in each dimension is 

proven. The Composite Reliability and Average Variance Extracted are not computed for 
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the visual appearance dimension. Since, it contains only one item and convergent validity 

can only be performed on two or more items. Moreover, a single item can be considered 

as highly valid according to Rost et al. [32]. 

6.1.2.2. Discriminant validity 

We used the Heterotrait-Monotrait ratio(HTMT) to demonstrate the discriminant validity 

of the items used to evaluate each dimension. A HTMT values less than 0.90 for all 

dimensions is required to demonstrate discriminant validity. As shown in Table 6.2, all 

of the HTMT ratios are less than 0.80, indicating that each measurement item is weakly 

correlated with all other dimensions except the one with which the item is associated and 

that the discriminant validity is established for all dimensions. 

 Usefulness Ease-of-use Effectiveness Efficiency 
Visual 

appearance 

Responses in 

unexpected 

situations 

Personality 

and 

humanity 

Response 

time 

Security and 

privacy 

User 

satisfaction 

Usefulness           

Ease-of-use 0.548          

Effectiveness 0.462 0.474         

Efficiency 0.646 0.627 0.512        

Visual 

appearance 0.400 0.335 0.334 0.390       

Responses in 

unexpected 

situations 
0.503 0.470 0.430 0.641 0.399      

Personality 

and 

humanity 
0.168 0.314 0.107 0.282 0.074 0.493     

Response 

time 0.153 0.317 0.488 0.262 0.253 0.205 0.101    

Security and 

privacy 0.273 0.323 0.231 0.320 0.433 0.277 0.221 0.399   

User 

satisfaction 0.513 0.360 0.423 0.561 0.284 0.693 0.733 0.173 0.394  

Table 6.2: HTMT ratios of all dimensions 
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6.2. Chatbot quality improvement with sentiment analysis 

We used the MS-Excel tool to measure for each group: the overall average, averages of 

each dimensions, the means and standard deviations of each items. Also, MS-Excel was 

used in order to perform the t-test to compare the averages between the two groups. 

Dimensions Items Mean Std dev Average 

Usefulness 
Usefulness_1 3.51 0.64 

3.53 
Usefulness_2 3.55 0.57 

Ease-of-use 

Ease-of-Use_1 3.66 0.55 

3.53 Ease-of-Use_2 3.29 0.66 

Ease-of-Use_3 3.62 0.56 

Effectiveness 

Effectivness_1 3.18 0.73 

3.46 Effectivness_2 3.62 0.56 

Effectivness_3 3.59 0.69 

Efficiency 

Efficiency _1 3.37 0.62 

3.48 Efficiency _2 3.37 0.62 

Efficiency _3 3.70 0.60 

Visual 

appearance 
Visual_appearance_1 3.18 0.68 3.18 

Responses in 

unexpected 

situations 

Responses in 

unexpected situations_1 
3.33 0.55 

3.13 

Responses in 

unexpected situations_2 
3.00 0.62 

Responses in 

unexpected situations_3 
2.77 0.80 

Responses in 

unexpected situations_4 
3.40 0.74 

Personality 

and 

humanity 

Personality and 

humanity_1 
1.59 0.57 

1.69 
Personality and 

humanity_2 
2.14 0.71 
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Personality and 

humanity_3 
1.33 0.48 

 

Response 

time 

Response time_1 3.07 0.61 

3.20 
Response time_2 3.33 0.62 

Security and 

privacy 

Security and Privacy _1 3.18 0.62 
3.38 

Security and Privacy _2 3.59 0.57 

User 

satisfaction 

User satisfaction_1 2.85 0.53 

2.71 User satisfaction_2 2.70 0.60 

User satisfaction_3 2.59 0.79 

Overall average = 3.13 

Table 6.3: Survey Results of the first group 

As shown in Table 6.3, the overall average of the first group is 3.13 from a maximum 

value of 5, which is a satisfactory rate. The overall averages of all dimensions, except 

personality and humanity, and user satisfaction, are greater than 3.00, which could also 

be considered satisfactory. On the other hand, the average of the dimension personality 

and humanity is 1.69, which is considered as a very poor score, while the average of the 

dimension customer satisfaction is 2.71, which is considered a poor score. 

Dimensions Items Mean Std dev Average 

Usefulness 
Usefulness_1 3.37 0.92 

3.48 
Usefulness_2 3.59 0.88 

Ease-of-use 

Ease-of-Use_1 3.70 0.54 

3.60 Ease-of-Use_2 3.37 0.56 

Ease-of-Use_3 3.74 0.65 

Effectiveness 

Effectivness_1 3.07 0.78 

3.40 Effectivness_2 3.77 0.93 

Effectivness_3 3.37 0.74 

Efficiency 

Efficiency _1 3.44 0.64 

3.54 Efficiency _2 3.44 0.75 

Efficiency _3 3.74 0.71 
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Visual 

appearance 
Visual_appearance_1 3.14 0.90 3.14 

Responses in 

unexpected 

situations 

Responses in 

unexpected situations_1 
3.51 0.64 

3.42 

Responses in 

unexpected situations_2 
2.85 0.71 

Responses in 

unexpected situations_3 
3.33 0.73 

Responses in 

unexpected situations_4 
4.00 0.78 

Personality 

and 

humanity 

Personality and 

humanity_1 
3.70 1.03 

3.54 
Personality and 

humanity_2 
3.88 0.84 

Personality and 

humanity_3 
3.03 0.97 

 

Response 

time 

Response time_1 2.96 0.58 

3.14 
Response time_2 3.33 0.62 

Security and 

privacy 

Security and Privacy _1 3.22 0.50 
3.42 

Security and Privacy _2 3.62 0.74 

User 

satisfaction 

User satisfaction_1 3.48 0.80 

3.59 User satisfaction_2 3.59 0.84 

User satisfaction_3 3.70 1.13 

Overall average = 3.43 

Table 6.4: Survey Results of the second group 

As shown in Table 6.4, the overall average of the second group is 3.43 from a maximum 

value of 5, which is a satisfactory rate. The total averages of all dimensions are greater 

than 3.00, which could also be considered satisfactory. 

The total averages of the survey results of both groups are shown in Table 6.5. The overall 

average of the second group that tested the chatbot with sentiment analysis is 3.43, which 
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is greater than the overall average of the first group that tested the chatbot without 

sentiment analysis, which is 3.13. The t-test was also performed to determine whether 

there was a significant difference in averages between groups. The resulting p-value is 

0.014, which is less than 0.05, indicating that there is a significant difference in overall 

averages between the two groups. 

First group overall 

average 

Second group overall 

average 

P-value 

(unpaired) 

3.13 3.43 0.014 

Table 6.5: The P-value of the unpaired t-test of overall averages between the two groups 

The survey results averages per dimension for both groups are shown in Table 6.6. The 

t-test was also performed on each dimension's averages to verify whether there was any 

significant difference in the dimensions' averages between the two groups. 

The overall averages in the majority of dimensions of both groups are almost equal, and 

the resulting p-value for each dimension was much higher than 0.05, indicating that there 

is an insignificant difference between the two groups in the majority of dimensions' 

averages (Usefulness, Ease-of-use, Effectiveness, Efficiency, Visual appearance, 

Response time, and Security and privacy). 

On the other hand, the overall average of the Responses in unexpected situations in the 

second group is 3.42, which is greater than the average of this dimension in the first group, 

which is 3.13. The resulting p-value is 0.063, which is close to but still more than 0.05. 

As a result, we cannot confirm that the difference in mean values on this dimension 

between the two groups is significant since 0.063 is greater than 0.05, implying that there 

is no significant difference. Furthermore, the overall average of the personality and 

humanity dimension in the second group is 3.54, which is much greater than the average 

of this dimension in the first group, which is 1.69. The resulting p-value is 1.594x10-12, 

which is less than 0.05. As a result, we can confirm that the difference in mean values on 

this dimension between the two groups is statistically significant. Finally, the overall 

average of the dimension User satisfaction in the second group is 3.59, which is much 

greater than the average of this dimension in the first group, which is 2.71. The obtained 

p-value is 5 x10-4, which is less than 0.05. As a result, we can confirm that the difference 

in mean values on this dimension between the two groups is statistically significant. 
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Dimensions 
First group 

average 

Second group 

average 

P- value 

(Unpaired) 

Usefulness 3.53 3.48 0.847 

Ease-of-use 3.53 3.60 0.661 

Effectiveness 3.46 3.40 0.580 

Efficiency 3.48 3.54 0.662 

Visual appearance 3.18 3.14 0.866 

Responses in unexpected 

situations 
3.13 3.42 0.063 

Personality and humanity 1.69 3.54 1.594x10-12 

Response time 3.20 3.14 0.718 

Security and privacy 3.38 3.42 0.804 

User satisfaction 2.71 3.59 5 x10-4 

Table 6.6: : The P-value of the unpaired t-test of overall averages per dimension between both 

groups 

Hypotheses testing: 

Hypotheses Support 

H1: Users consider that the overall quality of a chatbot that can analyze 

sentiment is better than the overall quality of the same chatbot that does not 

analyze sentiment 

Yes 

H2: If the overall quality of a chatbot has improved using sentiment 

analysis, then the quality of all dimensions improves as well 
No 

Table 6.7: Hypotheses and results 

The first hypothesis could be accepted for two main factors. First, the overall average of 

the first chatbot version is equal to 3.43 and higher than the overall average of the second 

version, which is equal to 3.13. Second, the p-value of the t-test that measures the 

difference in overall averages between the two chatbot versions is equal to 0.014 which 

is less than 0.05, indicating a significant difference between the two overall averages. 
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The second hypothesis could not be accepted since the resulting p-value in the majority 

of dimensions between the two chatbot versions was higher than 0.05, indicating an 

insignificant difference between the two versions in the majority of dimensions' averages. 

Furthermore, Only the overall averages of the dimensions User satisfaction, and 

Personality and Humanity are increased in the second chatbot version with a resulting p-

values less than 0.05, indicating a significant difference. 
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7. Discussion 

This chapter comprises of what can be observed from the survey findings and a 

comparison of these results with previous studies in order to answer our research 

questions. 

The goal of this study was to first develop and evaluate a general assessment model with 

ten quality dimensions (Usefulness, Ease-of-use, Effectiveness, Efficiency, Visual 

appearance, Responses in unexpected situations, Personality and humanity, Response 

time, Security and privacy, Response time, and User satisfaction) to evaluate the quality 

of chatbots and compare the quality of different versions or types of chatbots. The second 

goal of this study was to implement two versions of the same chatbot (a first version 

without sentiment analysis and a second improved version that can analyze emotions and 

respond accordingly) and evaluate and compare their performances using the evaluation 

model we developed in order to demonstrate whether sentiment analysis can improve the 

overall quality of the chatbot, and if so to identify the quality dimensions that were 

enhanced with sentiment analysis. 

We created the following research questions to guide us during our study: 

RQ1: What are the quality dimensions that can be used to evaluate chatbots? 

RQ2: Can sentiment analysis improve the quality of a chatbot? 

We also set the following hypotheses to assist us in answering our second research 

question: 

- Users consider that the overall quality of a chatbot that can analyze sentiment is 

better than the overall quality of the same chatbot that does not analyze sentiment. 

- If the overall quality of a chatbot has improved using sentiment analysis, then the 

quality of all dimensions improves as well. 
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7.1. Chatbot evaluation 

In this section, we will discuss the previous chapter's findings in order to answer our first 

research question. 

As shown in Table 6.1, the results show that the Cronbach Alpha coefficient of each 

dimension was between 0.70 and 0.91(a Cronbach Alpha score between 0.70 and 0.95 is 

required, indicating that every set of items used to evaluate each dimension was reliable. 

The results also reveal that the composite reliability (CR) of each dimension was greater 

than 0.70 (A CR score greater than 0.70 is required) and the Average Variance Extracted 

(AVE) score of each dimension was greater than 0.5 (An AVE score greater than 0.5 is 

required), as shown in Table 6.1. Thus, the convergent validity of the items used to 

evaluate each dimension is demonstrated. As seen in Table 6.2, the Heterotrait-Monotrait 

ratio (HTMT) ratios of all dimensions were less than 0.70 (HTMT ratios less than 0.90 

are recommended for each dimension), indicating that each measurement item is weakly 

correlated with all other dimensions except the one with which the item is associated, and 

demonstrating the discriminant validity of the items used to evaluate each dimension. 

Because both convergent and discriminant validity were proven, the validity of the items 

used to assess each dimension is confirmed, which indicates that all the items used in our 

evaluation model to evaluate the quality of chatbots are valid and reliable. 

Our findings are the same as Lin et al. [30] that demonstrated the reliability and validity 

of the items employed to assess each construct.  

7.2. Chatbot improvement with sentiment analysis 

In this section, we will discuss the results of the previous chapter in order to respond to 

our second research question. 

 Chatbot overall quality improvement 

Our results indicated that the first hypothesis we tested, “Users consider that the overall 

quality of a chatbot that can analyze sentiment is better than the overall quality of the 

same chatbot that does not analyze sentiment”, could be accepted. Because the second 

chatbot's overall average (3.43) was greater than the first version's overall average (3.13), 
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the resulting p-value was equal to 0.014 < 0.05, indicating a significant difference in the 

overall averages between the two versions. Our findings support the theory that sentiment 

analysis improves the chatbot’s quality when compared to the same chatbot without 

emotion analysis, which is consistent with the previous studies conducted by Almansor 

et al. [33], by Abedin et al. [34], and by Sutoyo et al. [35].  

 Dimensions improvement 

Our findings showed that the second hypothesis we tested, “If the overall quality of a 

chatbot has improved using sentiment analysis, then the quality of all dimensions 

improves as well”, could not be accepted. Because, the results showed that the majority 

of dimension averages were almost similar between the two chatbots, and the resulting p-

value of each dimension between the two chatbot versions was greater than 0.05, 

suggesting an insignificant difference. Furthermore, the results indicate that the overall 

average of the dimension Responses in unexpected situations of the second chatbot 

version (average equal to 3.42) was greater than the overall average of this dimension in 

the first version (average equal to 3.13). However, the p-value of this dimension between 

the two versions was equal to 0.06, which is close to 0.05 but still greater. As a result, our 

findings cannot confirm that the second version handled unexpected situations better than 

the first, and that this dimension is enhanced in the second version. 

The overall average of the dimension Personality and humanity, on the other hand, has 

increased from 1.69 to 3.54 in the second version, with a resulting p-value equal to 

1.594x10-12<0.05, indicating a significant difference in averages between the two chatbot 

versions. Furthermore, the average of the dimension User satisfaction increased from 2.71 

to 3.59, with a p-value of 5 x10-4<0.05, indicating a significant difference in 

averages between the two chatbots. As a result, our data demonstrated that the Personality 

and humanity, as well as the User satisfaction dimensions, have improved in the second 

version.  

Our results showed that sentiment analysis did not increase the quality of the following 

quality dimensions: Usefulness, Ease-of-use, Effectiveness, Efficiency, Visual 

appearance, Responses in unexpected situations, Response time, and Security and 

privacy. These findings demonstrated that sentiment analysis increased just two 

dimensions: Personality and humanity and User satisfaction. These results are consistent 



Discussion 

100 
 

with the findings of Sutoyo et al. [35] who proved that sentiment analysis can improve 

chatbots' Personality and humanity, and increase the user’s delight. However, our findings 

contradict the findings of Almansor et al. [33] which revealed that a chatbot that can 

analyze emotions handled responses in unexpected situations better than the same 

chatbot that cannot analyze sentiment. The difference between our findings and those of 

Almansor E et al. could be due to the difference in the evaluation methodologies. They 

used an automated evaluation technique that did not require human testers to evaluate and 

compare the chatbot without sentiment and the chatbot with sentiment, whereas the 

evaluation model we used was based on human testers. Furthermore, employing a larger 

sample of testers could help us to confirm whether sentiment analysis can improve the 

chatbot's ability to handle unexpected situations. 

Furthermore, our findings contradict the findings of Abedin et al. [34] who proved that 

sentiment analysis enhanced the chatbot accuracy of understanding the user’s intentions 

(i.e. The effectiveness in our evaluation model) when compared to the same chatbot that 

cannot detect sentiments. This difference in findings between our study and theirs may 

be due to the fact that they trained a model to predict the user’s sentiment based on 

his input. Then, they trained another model to predict the user’s intent based on the 

predicted sentiment. On the other hand, we trained a single model that predict both the 

user’s intent and sentiment.  

To summarize, our findings showed that sentiment analysis increased the overall quality 

of a chatbot, when compared to the same chatbot without sentiment analysis. 

Furthermore, sentiment analysis improved the Humanity and personality of the chatbot, 

and the User satisfaction. However, sentiment analysis did not improve the majority of 

dimensions such as the accuracy of understanding the user’s intents. 
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8. Conclusion and outlook 

This chapter will conclude the study by summarizing the important research results in 

connection to the research goals. It will also review the study's limitations and 

propose recommendations for future research. 

In this thesis, we developed a general evaluation model based on user’s experience to 

evaluate and compare the quality of chatbots by examining 10 chatbot dimensions. This 

strategy necessitates human testers interacting with the chatbot.  Following that, the data 

from user testing is gathered quantitatively using surveys. 

In this study, we also implemented two chatbot versions using the Rasa framework (one 

that cannot understand sentiments and one that can analyze sentiment and respond 

accordingly) and evaluated and compared them using our evaluation model to investigate 

whether sentiment analysis can improve chatbot quality and to identify the 

dimensions improved by sentiment analysis. 

Our findings indicated that the items used in the evaluation model to evaluate the quality 

of chatbots, were valid and reliable. Furthermore, the results of the comparison between 

the two chatbot versions using the evaluation model showed that sentiment analysis 

increased the chatbot's quality. However, it did not increase the majority of dimensions 

such as effectiveness (i.e. the accuracy of understanding user intention) and improved 

only two dimensions: The Personality and humanity, and user satisfaction. 

In this thesis, the chatbots general evaluation model that we developed might be a useful 

tool for developers, researchers and companies to have a general overview of the quality 

of chatbots they wish to evaluate or to compare, which can address the gaps of most of 

existing studies that have not presented a general evaluation framework to evaluate 

chatbots. 

8.1. Limitations 

Our results demonstrate that the questionnaire utilized by our evaluation model is valid 

and reliable, and that sentiment analysis improves chatbots quality when compared to the 

same version without sentiment analysis. This study, however, has some limitations: 
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First, due to time constraints, the data was collected from a relatively small sample, which 

means that we cannot generalize our findings to the entire population. To provide more 

conclusive results, a larger sample should be used. 

Also, our evaluation model only includes a quantitative method to evaluate chatbots, 

which is based on statistical analysis, and does not include a qualitative approach, such 

as interviewing human testers, which can be more revealing since testers may have 

comments about some points concerning the quality of the chatbot. 

8.2. Future Research 

For future study, we propose using a large sample of human testers to increase the 

accuracy of the findings, and to be able to generalize the results to the broad population.  

Furthermore, we recommend that our evaluation model include a qualitative approach 

that interviews testers about the quality of chatbots. As a result, the assessment model 

will include both quantitative and qualitative approaches, which may improve its 

efficiency to evaluate the performance of chatbots. 
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