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1 Background 

Efficient and reliable onsite inspection methods are gaining importance as the construc-

tion of PV power plants is expanding. For large PV installations, time- and cost-efficient 

failure detection is essential for optimized operation and maintenance. For this purpose, 

various optical methods as Infrared thermography (IR), Electroluminescence (EL), Pho-

toluminescence (PL) and Ultraviolet Fluorescence (UVF) are employed and under con-

stant development. For each method, the camera, and eventually the light source, can 

be handheld, or mounted on a drone, also called unmanned aircraft vehicle (UAV), to 

achieve higher throughputs. 

IR is the most widely used optical onsite PV inspection method, as many defects can be 

detected by the thermal radiation (heating) of the defect component. EL and PL reveal 

further information on the electrical behaviour of the Si-waver. They are also widely used 

and take the role of a complement to IR, showing electrically active/inactive areas of the 

semiconductor. On the other hand, UVF focuses on the degradation of the polymeric 

encapsulant of the Si-cell, most commonly consisting of EVA (ethylene-vinyl acetate). 

The degradation of the encapsulant can lead to its discoloration, also called yellow-

ing/browning, which decreases the transmittance of visual light. UVF patterns can show 

this yellowing as well as humidity and oxygen entrances, which can lead to effects of 

corrosion. Both mechanisms (discoloration and corrosion) decrease the performance of 

the PV cell. The discoloration cannot be directly observed on IR or EL images, as the 

encapsulant is neither a heat source nor electroconductive. Using IR imagery, severe 

discoloration might be observed indirectly, as the reduced optical transmittance leads to 

changes in heat transfer mechanisms concerning the cell and the encapsulant. 

Similarly, as long as corrosion does not lead to inactive cell areas or heating, it most 

likely will not be spotted using EL, PL or IR. So, UVF can fill the niche of inspecting the 

state of the encapsulant and detecting its defects due to climate impacts in early stages. 

While a high number of studies on IR, EL, PL and some on UVF were performed in 

Europe and the USA, there are not yet many studies about the application of these tech-

niques in South America (i.e., in Brazil). UVF mainly depends on climate factors (irradi-

ation, temperature, humidity) and the operation time/”age” of the module. The UVF im-

agery method has not yet been tested in climate and system conditions of Brazil. Fur-

thermore, systems in Brazil are more recently installed. All this can affect differences in 

the results of UVF imagery applied in Europe, the USA and Brazil. 

The present work focuses on the application of UVF imaging on PV power plants in Bra-

zil, the creation of an experimental setup and the proposal of proceedings for the data 

analysis of the acquired images. The aim is to propose a method that is suitable for large-

scale inspection. 
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2 Scope and aims of this project 

The present project focuses on the application of UVF as an onsite inspection method 

for PV modules in Brazil. 

- Development of an experimental setup 

Within the course of this project, UVF images are captured using a mobile setup in the 

field. Efforts to optimize the experimental setup are made whenever possible. Alterna-

tively, options and room for improvement are indicated for future studies. 

The experimental setup will be evaluated and, if possible, compared to setups used by 

other researchers. Adequate criteria for this could be the quality of the images, the costs 

and the throughput of the method in modules/cells investigated per time unit. 

- Onsite acquisition of UVF images 

UVF images of polycrystalline PV modules in the field are taken, trying to ensure repro-

ducibility and the best conditions that are practically possible. Images of intact as well as 

defect modules are taken, as well as images from different strings and different PV sites. 

- Evaluation, interpretation and comparison of UVF images 

The acquired UVF images are evaluated regarding the UVF pattern. Eventual pre-pro-

cessing steps such as image editing using Digital Image Processing, are applied, to test 

whether they facilitate the evaluation and increase the visibility of UVF patterns and pos-

sible defects. If possible, the UVF patterns are matched to UVF patterns known from 

literature. Common phenomena appearing in several PV cells are named. Any arising 

assumptions for the causes of the UVF patterns (such as cracks) are noted. A brief com-

parison between UVF images from experiments and from literature are made to outline 

which phenomena are case-sensitive and which are not. Arising assumptions about the 

reasons for this case-sensitivity are noted as well. 

- Development/Application of an appropriate computational analysis 

To foster the automatization and to improve cost-efficiency, the acquired images need 

to be processed digitally with the aim to facilitate the defect detection. This processing 

can consist of Digital Image Processing (DIP) using transformations and filters available 

in image processing software. Available possibilities for further automatized analysis us-

ing techniques from the area of Artificial Intelligence (AI) are indicated and given the 

possibility, applied and tested. The adaption or further development, as far as allowed, 

of present open-source software such as OpenUVF, is tried as far as the resources of 

this project (workhours, available skills in Computer Science) allow it. 

The in-depth application, testing and optimization of these methods is not the emphasis 

of the present work, as it lies beyond the possibilities of this project, but, if possible, can 

be added as a supplement. 
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3 Central Hypothesis and Questions 

The central hypothesis of this work is that UVF is an efficient and cost-effective method 

for PV module inspection even in different climates. This hypothesis is based on the 

premiss that the ageing process of the PV cell by UV degradation of the encapsulant is 

based on the same general mechanisms and therefore comparable between different 

climates. 

To assess this generalization of applicability, the question of case-sensitivity needs to be 

considered (qualitatively). Due to climate factors influencing the formation of fluoro-

phores, the UVF patterns appearing in Brazil could differ significantly from those of other 

climates. This raises the question if and how a generalized tool for UVF evaluation can 

be developed and which main functions it needs to offer for a future entrance into the 

market of PV assessment tools/services. So far, the main functions are assumed to be 

detection of PV modules and cells, perspective correction, segmentation of PV cells and 

the yes/no decision (binary classification) of cracks, compare [1]. 

Regarding the experimental setup as well as the data evaluation process, a main ques-

tion is how compromises between complexity/simplicity and generalization/specialization 

can be achieved. 

Finally, the question of usability, applicability, time- and cost-efficiency is important, es-

pecially regarding large-scale application and a market entrance in the near future. 
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4 Theory & State of the Art 

Before using UVF as basis for an inspection technique, it is essential to know how it is 

formed. By presenting the state of the art on how it influences power yield, the importance 

of UVF as an inspection technique can be justified. Finally, the most common UVF pat-

terns need to be known for the design of a UVF image analysis tool. 

4.1 Formation of UVF by exposure to sunlight  

The phenomenon of UVF appears in modules that have been exposed to sunlight and 

the formation of UVF is assumed to be a direct consequence of the UV sunlight irradia-

tion [2]. Incident UV-light degrades the EVA and its additives, the formed degradation 

products can fluoresce and are therefore visible on UVF images. 

Elevated temperatures of the module and therefore of the encapsulant are shown to be 

a factor which accelerates the formation of UVF [2]. The study by Morlier et al. [2] pro-

poses a saturation-growth modelling of the UVF formation. Within a time interval after 

the start and before the saturation phase, the UVF-intensity is quadratically correlated to 

the UV-dose [2], see Figure 1. 

 

Figure 1: UVF intensity vs. UV dose for different encapsulants (EVA) and temperatures [2] p.5 

This degradation proceeds via various degradation mechanisms. Some of these mech-

anisms and their interaction are not yet well-known and subject to current and future 

studies. 

The creation of UVF often correlates to a ‘yellowing’ or ‘browning’ effect, which is visible 

for the human eye in later stages [3]. The terms ‘discoloration of the encapsulant’, ‘trans-

parency loss’, ‘transmittance loss’ as well as ‘yellowing’ and ‘browning’ generally refer to 
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this same phenomenon and are widely used as synonyms. The effect can be quantified 

as the transmittance loss along the wave spectrum [2], and by the change in yellowing 

index, a measure for the colour change [3]. 

The transmittance measurements done by Morlier et al. [2] indicate that the intensity of 

UV exposure is correlated to the extent of transmittance loss. So, the longer an encap-

sulant has been exposed to sunlight, the more severe can be the loss its of optical trans-

mission [2]. 

The study [2] also showed that the current density loss (in percentage) increases linearly 

with the UVF intensity [2]. And as the UVF intensity is related to the UV dose, a direct 

correlation between the current density loss and the UV dose can be drawn [2], see 

Figure 2. These correlations can be used to quantify and measure the ageing and power 

loss of PV modules by UVF imagery or spectroscopy measurements. 

 

Figure 2: Current density loss correlated to UV dose and equivalent years of operation in Northern Ger-

many, [2] p.6  

To obtain a generalized model, the local UV dose of each module/cell can be proposed 

as an independent variable, and the current density loss as dependent variable. The UV 

dose is the irradiance integrated over time since the installation and is specific to a mod-

ule/cell and the climate in which it operates. So, the conversion between the two abscis-

sas in Figure 2 is particular to the climate in which a PV cell operates [2]. 

Morlier et al. [2] concluded that in Northern Germany, losses due to the discoloration of 

the encapsulant and ignoring all other degradation effects, will stay below 2% for the first 

20 years of operation [2]. However, as the yearly irradiation in of South America is gen-

erally notably higher, a higher impact on current and power loss can be expected. It 
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should also be noted that the power yield on the DC side of a PV power plant is quad-

ratically depending on the current. So, the power loss is proportional to the square of the 

current loss: 

𝑃𝐷𝐶 = 𝑈𝐷𝐶 ∗ 𝐼𝐷𝐶 = 𝑅 ∗ 𝐼𝐷𝐶
2  

To conclude, further studies of the impact of EVA-degradation on power loss need to be 

done, especially within different climate zones. 

4.2 Degradation mechanisms and their interdependence 

Apart from the pathway of transmittance loss, incident UV-light can create various deg-

radation mechanisms, which can interact physically (i.e., by transmission/absorption of 

UV light and heat sources/sinks) and chemically (by the formation of degradation prod-

ucts, by-products. Alongside the UV irradiation, climate factors and the composition of 

the module determine when and in which pattern UVF appears, as seen in Table 1. 

Table 1: Ambient and Constructive Factors influencing the formation of UVF 

Ambient Factors 

(climate and surrounding) 

Constructive Factors 

(concerning the module/cell composition) 

• UV-dose (kWh/m²) = UV-irradiation 

[2] [4] = UV irradiance history inte-

grated over time 

• UV irradiance-history* (kW/m² for 

each min) 

• ambient and cell/module temperature 

(°C) [2] [4] 

• air humidity (g water/m³ dry air) [5] [4] 

• climate (history and combinations in 

which the above factors occur) [4] 

• operating time (in years) [2] 

• albedo-value* 

• extreme weather events* (e.g. hail-

storms, earthquakes) 

 

*Factors inferred from the context, not yet 

proven by experimental studies 

• front glass (transparency in UV range, 

earlier: cerium-containing glasses) [5] 

• front encapsulation [5] 

• encapsulant type and materials used 

between solar cells [5] 

• UV-pass or UV-cut encapsulants [3] 

or whether a UV-absorber is used [5] 

• cell interconnect ribbon [5] 

• lamination material type and material 

combinations [5] 

• combination of applied additives, e.g. 

oxidation stabilizers, UV absorbers, 

and the crosslinker [5] 

• back sheet type / bifacial module [5] 

• physical impacts (e.g. wrong module 

handling/montage, mechanical 

stresses) 
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Recent studies focused on UVF patterns, fluorescence of different cell parts [5] or fo-

cused on the occurrence and interaction of chemical processes related to UVF occur-

rence [4]. 

Yellowing/Discoloration probably is the effect which has been investigated most thor-

oughly and for most years already. Two main reasons for this probably are its visibility to 

the human eye in later stages and the direct way in which it impacts module power via 

the transmittance loss [1], [2], [4], [5]. Apart from yellowing, various other climate-induced 

degradation mechanisms can occur and interact [5]. Each degradation mechanism can 

affect the formation and pattern of UVF. 

Simultaneously to yellowing, another effect called photobleaching determines the UVF 

pattern. Photobleaching designates that oxygen entry causes a local extinction of the 

UVF light [5]. Likewise at these oxygen entry spots, fluorophores are still present and 

human-visible yellowing can still occur in later stages, but their UVF light signal isn’t 

visible neither for the camera nor for the human eye. As oxygen enters predominantly 

from cell borders and through cracks, a characteristic UVF pattern with photobleaching 

along borders and cracks can be observed [1] [5], see Figure 3. 

 

Figure 3: UVF formation and -extinguishing by photobleaching, [1] p.1 

Köntges et al. explains in detail under which conditions individual cell parts show UVF 

patterns and the respective causes [5]. 

Apart from yellowing/encapsulant discoloration and photobleaching, various other deg-

radation mechanisms can occur and interact, induced by exposure to the climate condi-

tions and detectible or related to patterns in UVF images, see Table 2. 
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Table 2: Degradation mechanisms and interaction pathways affecting the encapsulant and UVF 

Degradation mechanisms Interaction pathways 

• Encapsulant discoloration (yellowing, 

transmittance loss) [2] 

• Cracks, leakages 

• Photobleaching [5] 

• Metallization degradation (corrosion) 

- of the silver gridline surface by sil-

ver oxide formation [4] 

- by acetic acid formation [3] 

• Solder bond degradation [4] 

• Delamination [3] 

• transmission/absorption of UV light 

• heat sources/sinks (i.e. hot spots) 

• oxygen transmission rate (OTR), local 

presence/absence of oxygen 

• formation & diffusion of substances 

such as UV-absorber, degradation 

products, acids etc. [5] [4] 

For research on these degradation mechanisms and their interaction, usually a combi-

nation of inspection methods and/or time series of data are used. Inspection methods 

measure physical or chemical parameters to observe and quantify the occurrence of 

UVF and discoloration/transmittance loss. Table 3 shows which parameter is measured 

by which measuring technique. 

Table 3: Physical/Chemical Parameters and measuring techniques characterizing the encapsulant 

Physical / Chemical parameter Inspection/Measuring technique 

presence, concentration and spatial distribu-

tion of fluorophores (degradation products) 

UVF imaging 

absorption, reflection, transmittance of PV cell 

components, especially encapsulant and back 

sheet 

UVF spectroscopy  

I_SC, U_OC, I-U curve, FF loss I-U curve measurements, monitoring  

colour change (reflected spectrum) YI (yellowing index measurements) [3] 

chemical composition analysis X-ray photo-electron spectroscopy (XPS) [4] 

Scanning electron microscopy (SEM) [4] 

parameters related to ageing experiments on field-retrieved modules, ac-

celerated stress testing in UV/heat chambers 

EL, PL and IR are not listed in order to focus on inspection techniques that regard the 

encapsulant properties rather than Si-wafer properties. Naturally, I-V curve measure-

ments do not measure encapsulant properties directly. However, indirect conclusions 
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from I-V curves on encapsulant degradation can be drawn, assuming unaltered behav-

iour of the Si-wafer itself. So, Table 3 supplies a list of techniques that can be used for 

comparison or confirmation of each other. 

4.3 Present experimental setups for onsite inspection 

To prevent sunlight from superimposing the UVF signal, and to have exclusively UV-

excitation (not with the whole sunlight spectrum), UVF measurements are commonly 

performed at night using UV lights as excitation source. To shoot EL and UVF images at 

daylight, Morlier et al. developed a hood-structure that can be placed on one module to 

block the sunlight [6], see Figure 4. 

 

Figure 4: Hood-structure for UVF Imaging in the field at daylight, (2017) [6] p.2 

With this method, up to 200 images per hour and one module per image can be taken 

[6]. When working at night and aiming at images of at least one module at a time, tripods 

or monopods can be applied to mount the camera and eventual UV lights [1]. Gilleland 

et. al. developed a setup using a 5m high monopod, see Figure 5. 
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Figure 5: Mobile UVF system using a monopod, covering about 5 modules at a time (2019) [1], p.2  

According to the developers, this setup allows throughputs of 1000 modules per hour, or 

up to 2000 modules/hour in case the modules are mounted in two rows [1]. 

Similar to IR inspections, a drone-based setup could also be used for UVF imagery. 

When creating a drone setup for UVF inspection, several criteria/goals need to be fulfilled 

at the same time, such as a low weight of the drone and its flight stability, enough battery 

power for UV lights, a low noise camera and for the drone itself, compare [5] p.15. Even 

when all these criteria are fulfilled, a legal permission for drone flights at night is needed, 

which can raise problems regarding the local laws or the assurance of the PV plant or 

the drone. Another compromise is the flight height, either covering a lot of modules at 

the same time with low resolution, or few modules with high resolution. 

After presenting the experimental setups used in this project, a summarizing table com-

paring all setups is given in 5.2.6 (Table 4). 

4.4 Basic concepts of Deep Learning for Image Classification 

This section introduces fundamental concepts and principles used in Deep Learning with 

the aim of image classification. Image classification is often used to tag experimentally 

acquired images with the main information, here: the presence/absence of defects. Note, 

that there are other techniques that can be used as alternative approaches, such as 
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image segmentation or object detection. However, here only image classification is dis-

cussed and applied. 

4.4.1 Concepts of Neural Networks 

Neural Networks can be seen as function which can learn a correlation between the 

provided input and output data [7]. As the name states, they are inspired by human neu-

rons and consist of several neurons as processing elements connected to each other 

building a network [7] [8]. The network consists of several layers with different layer types 

and connection modes for different tasks [8]. 

The general design of a single neuron is shown in Figure 6 and works as follows [8] [7]: 

Input signals (numeric values) from several (or all) neurons of the previous layers reach 

the input node of the neuron. A weighted sum (scalar product) of the input vector and 

the weights is computed. One weight is assigned to each connection. The resulting value 

is passed to an activation function, e.g. the Heaviside (unit step) activation function or 

tanh(). Commonly, a rectified linear unit activation, short ‘relu()’ is applied. This affects 

that the weighted sum needs to surmount a certain threshold value to create an output. 

The activation function also scales the output, so that the values remain in a certain pre-

defined range, e.g. between 0 and 1 [7]. 

 

Figure 6: Working scheme of a perceptron - a single neuron [9] 

To summarize, a single neuron executes a weighted sum (scalar product) at the input 

and applies an activation function that includes both thresholding and scaling the output 

value [7]. 

Likewise, the creation of a prediction based on input and weight(s) values can be ex-

pressed by the following formula [7]: 

(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛): 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑖𝑛𝑝𝑢𝑡 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡 (+𝑏𝑖𝑎𝑠) 

The bias is a different formulation for the thresholding and activation and represents the 

increase by the activation function when the thresh is surmounted [7]. 
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Within a network of several neurons in each layer, the scalar operations shown above 

become matrix operations, see Figure 7: 

 

Figure 7: The prediction of a fully connected layer with 3 input and 3 output values; the drawing based on 

the illustrations in [7] 

Layers in which all the neurons are connected to each other (as shown above) are called 

fully connected layers. For simplicity, the above scheme only portrays the multiplication 

of the input vector with the weight matrix; the second step of thresholding is not shown. 

Given a set of weights, such fully connected layers can create a vector of outputs for a 

given input vector (make predictions) [7]. In supervised learning, pairs of input and true 

output (target) data samples are provided to the network and the aim is to learn the right 

weight (and eventually the right threshold) values [8]. With the information or ‘knowledge’ 

stored in the weights, a Neural Network can model the correlation between input and 

output [8]. 

To adapt the weights, the gradient descent algorithm can be applied: after the prediction, 

the obtained output value is compared to the target value, and the absolute difference 

‘delta’ and the error value are computed [7], [8]. There are different error functions, also 

called loss functions. For simplicity, the squared error is taken here [7]: 

(𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒):    𝑑𝑒𝑙𝑡𝑎 = 𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑡𝑎𝑟𝑔𝑒𝑡 

(𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟):    𝑒𝑟𝑟𝑜𝑟 = (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑡𝑎𝑟𝑔𝑒𝑡)2 

In case of several input and output values for each neuron, these functions have several 

dimensions. The gradient descent algorithm computes the derivative (1D) or gradient (in 

several dimensions) of the error function at the current weight position [7], [8]. This gra-

dient is subtracted from the current weight value, which shifts the weight to a position 

where it yields a lower error [7]. Applying this algorithm several times, the weight is 

shifted stepwise to better positions, yielding lower error values [7]. Finally, the weight 

either oscillates around or reaches the optimum position. At the optimum position it would 

yield the global minimum of the error function, ideally a zero error [7]. 
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The Figure 8 illustrates the gradient descent algorithm using the one-dimensional exam-

ple of one input and one output value [7]. In the shown case, the current weight is too 

small and the derivative of the error function (yellow slope) is negative. A value ‘change’ 

is computed, based on the derivative, with scaling and applying a learning rate (step 

size) alpha [7]. All these operations do not alter the sign and only scale the value of the 

derivative. This value is renamed to ‘change’ and as the derivative, negative. When sub-

tracting this negative value from the current weight value in step 6., the weight is in-

creased (two minus signs). As desired, this increase shifts the weight closer to the opti-

mal weight value [7]. 

In the contrary situation that the current weight value is too large, the positive slope is 

subtracted, so that the weight value is reduced. In both cases, the weight value is shifted, 

towards the optimal weight position [7]. 

 

Figure 8: Illustration of the gradient descent algorithm at the example of one input and one output value; 

illustration adapted from [7] 

The gradient descent algorithm corrects one weight value at a time and needs the re-

spective error value and error function (to build the gradient). 

There are different variations of the gradient descent algorithm e.g., applying different 

error functions, inertia when moving the weight or adapting the step size, for more details, 

consult [7] and [8]. 

Networks can generally be called ‘deep’ when they have (far) more than one layer. When 

training Deep Neural Networks on a databank of input and output data, data samples or 

batches are processed one after another. 

For each sample, the full learning process is executed: first a prediction is made by mul-

tiplying the input vector stepwise with the weight matrices of each layer until reaching 

the output layer. This process of passing the values through the network is called forward 

propagation, see Figure 9, [7]. At the output layer, the error values are computed, by 
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handing the output and target (or goal) values to the error function. This yields one error 

value for each neuron at the output layer. However, one error value for each weight is 

needed, in the earlier layers as well [7]. For that, the error signal is traced back to previ-

ous layers by multiplying it with the transposed weight matrix (weights.T), see Figure 9, 

[7]. This process is called backpropagation. 

 

Figure 9: Illustration of the learning workflow: forward propagation, error at the output layer and backpropa-

gation; illustration inspired by the figures in [7] 

By executing forward propagation, building the error and backward propagation, one 

learning step (one correction of each weight) is performed, based on the current batch 

of data samples [7]. Passing all the data samples of the training dataset in batches to 

the network is called one training epoch. To verify the performance on unknown data, 

the network is used to make predictions on the validation data in each epoch. Both the 

performance metrics on training and validation data are stored in arrays and monitored 

in the console and via plots. The plots should be similar to the one in Figure 10. 

 

Figure 10: Idealized graphs of performance (error) on training and validation data showing overfitting; on 

the horizontal axis are the epochs (= nr of iterations), [10] 
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Overfitting of the Neural Network model occurs, when the performance on validation data 

stagnates or becomes worse while the performance on training data [7], [8]. From that 

epoch onwards, the model learns characteristic details of the training dataset, and stops 

to learn general features [7]. This behaviour can also be considered as ‘learning by heart’ 

instead of generalizing [7]. 

Optimizing the learning process has the aims to delay overfitting and to stop the training 

one epoch before overfitting occurs [7], [8].  Nagidi, [10] and the literature on Deep Learn-

ing, e.g. [8] and [7], provide more detailed information on overfitting and methods to de-

lay/prevent it. 

4.4.2 Convolutional Neural Networks for Image classification 

To process and learn on image data, Neural Networks need special layers and opera-

tions: convolutional layers and MaxPooling layers [8]. A convolution is a matrix or tensor 

operation in which a kernel (a filtering matrix consisting of constants) is passed line by 

line over the input image [8]. At each position, a matrix-matrix multiplication is performed. 

The resulting value is stored at the respective position, at the centre of the kernel in a 

matrix containing the output values called output feature map [8], see Figure 11. 

 

Figure 11: The convolutional operation using filtering kernels to create the output feature maps; [11] (left) 

[12] (right) 

Variations of the convolutional operation can be done by using different kernel sizes, 

kernel values and shapes and different step widths between positions and lines. Different 

kernels (image filters) extract different features, for example textures and object borders 

[8]. Commonly, 32 or 64 filters are applied in one convolutional layer, creating a respec-

tive number of output layers [8]. As this generates a great amount of data, the so-called 

MaxPooling layers are used to filter out maximal values [8]. 

By stacking convolutional and Max-Pooling layers alternatingly, characteristic image fea-

tures are extracted. In this feature extraction, the first layers filter small-scale features 

such as textures while layers deeper within the CNN can extract features that stretch 

over the whole image, see Figure 12. 
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Figure 12: Feature extraction in a CNN at the example of processing dog images,  

Source: https://www.symmetrymagazine.org/sites/default/files/images/standard/neural_network_visual_final.jpg 

For image classification a block of convolutional and Max-Pooling layers (feature extrac-

tion) is used, at the end of which a few (commonly two) fully connected layers are added 

[8]. The final fully connected layers are called the classifier. The final layer needs to have 

as many neurons (output values) as there are classes. At the end a softmax-activation 

function can be used, which scales the output values to the range between 0 and 1, [8]. 

Each output value of a prediction can then be interpreted as the probability that the input 

image belongs to the respective class. The target vector is a one-hot coded vector, that 

means all array entries are equal to zero except for the one at the position of the right 

class, whose value is one [7], [8]. 

The Figure 13 shows an exemplary CNN architecture with the example of digit-classifi-

cation with the MNIST-image dataset. 

 

Figure 13: Architecture of a CNN: feature extraction and classifier at the example of the MNIST-dataset, [13] 

https://www.symmetrymagazine.org/sites/default/files/images/standard/neural_network_visual_final.jpg
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The short form ‘MNIST database’ stands for “Modified National Institute of Standards 

and Technology database”, named after the institute which created the dataset. The 

MNIST-dataset is a set of handwritten digits that is very commonly used to test image 

processing software. 

4.5 Present Evaluation Tools 

Single UVF images can be manually edited using common photographic image pro-

cessing software (such as Photoshop) available as professional versions, free trial ver-

sions or open-source software. This method is suited for editing and evaluating small 

series of images e.g., for the analysis of some cells from laboratory experiments or the 

evaluation of a few modules. The operating person can then judge on presence/ab-

sence and type of encapsulant defects. 

But in the case of large-scale PV power plants, a high throughput of modules is needed 

and the evaluation of their images needs to be automatized, to remain time- and cost-

efficient. Some of the available tools that approach this problem are presented in the 

following subsections.  

4.5.1 OpenUVF 

Such an automatized (or semi-automatized) image processing and evaluation tool could 

be the open-source software OpenUVF, which was developed to cover several pro-

cessing steps of a data evaluation pipeline [1] (see Figure 14). 

 

Figure 14: Processing steps of the tool OpenUVF including cell and module segmentation, perspective cor-

rection and a TensorFlow model applied to detect cracks on each cell, [1] p.4 

OpenUVF uses Python and Matlab scripts, for the application of Deep Learning models 

and is still being developed [1]. The developers, Gilleland et al., intended to shift all pro-

cessing steps to Python. The tool can be access on Github1 and is thought as a base for 

each user’s application [1]. The developers achieved an automatic crack-detection with 

 
1 https://github.com/southern-company-r-d/OpenUVF  

https://github.com/southern-company-r-d/OpenUVF
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an accuracy of 91.7% [1]. This detection accuracy refers to the binary decision of the 

Deep-Learning model whether a cell has a crack or not. 

Usage in this project: Efforts were made to use and further develop this tool in the 

present project. However, large parts of the documentation were not finished by the de-

velopers, so that the information on how to use the codes needs to be inferred from the 

code functions and code comments, which resulted to be very time intensive. 

The installation was very tricky and took around two days, mainly because the versions 

and repositories of software packages have changed since the publishment of the tool 

(2019). For example, the tensorflow version got upgraded from 1.x to 2.x, and some 

central commands like “Sessions” have changed between the versions. 

The use of tensorflow allows a high potential in terms of functionality, but unfortunately 

complicates its usage for beginners in the domain of Deep Learning. The use of an API 

(application programming interface) like keras would simplify the coding and allow be-

ginners to understand and develop on the code as well. Naturally, this is a question of 

the target group and proficiency of the tool’s users.  

4.5.2 PV Vision 

The tool “PV Vision”2 was developed for processing of EL images and could potentially 

be adapted and applied for UVF images, too. 

The tool offers scripts for various processing steps, but the installation of PV Vision 

raised problems, e.g. some docker commands were not working to setup the virtual en-

vironment and for unpacking the image. PV Vision uses the coding platform ‘Supervisely’ 

and problems at accessing and using this platform were encountered, too. 

Usage in this project: As both the installation problems and the transfer from EL to UVF 

images would need a considerable workload, this tool has not been used in the current 

project. Nevertheless, for users who are familiar with docker and who process EL im-

ages, using PV Vision is probably a good approach. 

There are more existing tools, and some are being developed at the time of this work. At 

the present, the aforementioned were thought to be the most relevant for this project. 

  

 
2 see project description: pv-vision · PyPI 

https://pypi.org/project/pv-vision/#:~:text=PV-Vision%20Image%20analysis%20of%20defects%20on%20solar%20cells.,identification%2C%20crack%20segmentation%2C%20maximum%20isolated%20area%20prediction%2C%20etc.
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4.6 UVF patterns from earlier studies 

So far, only a few studies have been published on the correlation between climate, mod-

ule composition or age and the resulting UVF pattern. The existing papers, namely [1], 

[4] and [5] show a high case-sensitivity.  

Two commonly appearing patterns (both in literature and in this project) are the so-called 

square-pattern and ring-pattern, both showing photobleaching at points of moisture or 

oxygen entrance, see Figure 15. 

 

Figure 15: UVF ring pattern (left) and square pattern (right) portrayed by Köntges et al. 2019 [5] p.5 

Lateral entrance of oxygen/humidity that diffuses through the slots between cells are 

assumed to be the reason for the observed square pattern [5]. For the rim (or ring) pat-

tern Köntges et. al. propose the following mechanism: during the production of the mod-

ule, a UVA absorber was added to the rear EVA to protect the back sheet from degra-

dation, while the front EVA has not got this additive [5]. During the operation, oxygen and 

the EVA absorber diffuse across the slots between solar cells from the back to the front 

EVA and above the cell [5]. The superimposition of their effects on the UVF is assumed 

to cause the rim pattern [5]. 

Further descriptions of UVF patterns and UVF features as well as more observations on 

the respective encapsulant defects are presented in [1], [2], [4], [5] and [6]. 
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5 Methodology 

The methodology of this work closely follows the activities and goals mentioned in sec-

tion 2 “Scope and aims of this project” and involves experimental testing as well as test-

ing of software. 

5.1 Plan of procedures 

The proceeding takes place in two major stages, each consisting of an experimental and 

a subsequent analytical part. In the first stage, a “prototype”-setup is developed and ap-

plied. As disadvantages or room for improvement regarding the prototype are discovered 

in practice, these findings are considered for the development of the second experi-

mental setup. The feasibility of this second experimental setup stands under the condi-

tion of low-costs and short-delivery times.  

After the following image acquisition phase with the second setup, the image processing 

is developed, finalized and the thesis report is being written. All the phases can be seen 

in the Gantt-chart in Figure 16. 

 

Figure 16: Plan of procedures as Gantt-chart 

The cooperation partner, the Laboratory of Photovoltaics of the Universidade Federal de 

Santa Catarina, supports this project by giving access to laboratory equipment and 

providing the necessary devices (camera, tripod, UV lights and complementary equip-

ment for experiments). The laboratory grants access to their own PV power plant test 

site as well as sites of chosen cooperation partners. In addition to this, services such as 

transportation to and from the power plants are provided by the laboratory. 

The author wants to thank the UFSC laboratory of Photovoltaics for their generous sup-

port for this project. This research project is based on a recently signed (April-May/2022) 

cooperation agreement between the UFSC - Universidade Federal de Santa Catarina 

and the HRW – Hochschule Ruhr West University of Applied Sciences, the current uni-

versity of the author. 

Special thanks are to be directed to Prof. Ricardo Rüther and Aline Kirsten of the UFSC 

Photovoltaics Laboratory as well as to Prof. Marcus Rehm of the HRW Hochschule Ruhr 

West University of Applied Sciences for their contributing work on creating this coopera-

tion and likewise enabling this project. 
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Thanks to all the supporters of this project for their generous help. 

5.2 UVF Image acquisition in this project 

This section first presents the sites where UVF images were taken. Then, the developed 

experimental setups are presented, discussed and compared. 

5.2.1 Fotovoltaica/UFSC in Florianópolis 

The Fotovoltaica/UFSC is the Solar Energy Research Laboratory of the Federal Univer-

sity of Santa Catarina (UFSC - Universidade Federal de Santa Catarina). The Fotovol-

taica/UFSC laboratory performs research and development as well as demonstration 

projects in the sector of solar energy. A self-presentation and further information on pro-

jects are presented on their website3 and YouTube channel4. 

 

Figure 17: The fotovoltaica/UFSC Solar Energy Research Laboratory, source: Team of the 

fotovoltaica/UFSC laboratory 

The laboratory is located in Canasvieiras in the North of the island of Florianópolis (27°S, 

48°W) [14], the capital city of the federal state Santa Catarina. Various testing setups are 

operated at the laboratory grounds. The test setups include polycrystalline, monocrys-

talline, thin-film and CIGS PV modules, the use of fixed structures and trackers. The 

solar monitoring station disposes of various pyranometers and experimental measuring 

techniques under development. 

 
3 https://fotovoltaica.ufsc.br/sistemas/fotov/en/  
4 https://www.youtube.com/channel/UCG7j_EffB_2teLxAomPA3fA  

https://fotovoltaica.ufsc.br/sistemas/fotov/en/
https://www.youtube.com/channel/UCG7j_EffB_2teLxAomPA3fA
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For this project, whole-module UVF images of 9 polycrystalline PV modules operating at 

the laboratory grounds were taken. The modules have been operating for about 2,5 years 

and are a part of a comparative study, see [14]. 

5.2.2 The PV and wind power plant in Tubarão 

The first test site is the 3 MW PV power plant called “Usina Solar Cidade Azul”, operated 

by ENGIE5. The PV power plant is located at the municipality Tubarão, in Santa Catarina, 

Southern Brazil (28° South, 49° West) [15]. The plant was built for the purpose of re-

search and development in 2014 [15]. 

The plant counts/disposes of 20 thousand modules in total [15], installed on ground-

mounted racks, directed towards the North [15].  

The power plant consists of a wind turbine and three PV blocks of multi-crystalline (mc-

Si), thin-film (CIGS) and thin-film amorphous-microcrystalline silicon (a-Si) modules, re-

spectively [15], see Figure 18. 

 

Figure 18: The ENGIE PV power plant "Cidade Azul" in Tubarão, with multi crystalline (mc-Si), CIGS and 

amorphous microcrystalline PV power blocks [15] 

In this project, UVF images were acquired only on some of the 4,199 Yingli Solar 245Wp 

polycrystalline modules [15]. The other PV module types show no UV Fluorescence, 

because of their different composition/encapsulant. 

 
5 https://www.engie.com.br/institucional/sobre-a-engie/  

https://www.engie.com.br/institucional/sobre-a-engie/
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5.2.3 First setup, applied in Tubarão 

All UVF images in this project were taken at night, so that no cover against the light was 

needed. The experimental setups consist of an arrangement of UV-LED flashlights 

mounted on a tripod (eventually with a metal structure on top) and the handheld camera. 

Handholding the camera allowed quick acquisition of images from different angles and 

distances from the module. A right angle between the camera direction and the module 

surface would be ideal but could not be achieved due to the inclination of the modules. 

The experimental setups of this project are presented and afterwards compared to ex-

perimental setups described in literature. The setups used here mainly vary in the num-

ber and arrangement of UV flashlights. 

The first experimental setup consisted of a camera tripod with two UV-LED flashlights of 

51 LEDs each and powered by 3 AA batteries. 

 

Figure 19: First setup used in this project 

Different digital cameras were tried, and in the end, a smartphone camera with HDR 

resolution was used, as it showed the best performance regarding the automatic focus 

and brightness adjustment, while being easy to handle in the darkness. 

A UV filter, common in professional photography, was tested, but didn’t prove any visible 

improvement so that it wasn’t applied for image acquisition. 

Evaluation 

The first setup worked well for acquiring images of one to four cells at a time, mainly due 

to the small radius of the two flashlights’ light beam. The illumination is very inhomoge-

neous, so that only these few cells in the centre of the image show UV Fluorescence. 

This caused problems at the image processing when trying to detect the cell contours. 

This first setup is very cheap, only 10-20$ for the flashlights are needed in case a 

smartphone and a tripod are already present in the laboratory inventory. 
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Application 

This first setup was developed and tested at the Photovoltaic laboratory of the UFSC 

and applied for UVF image acquisition at PV power plants in Tubarão, Santa Catarina, 

Brazil. 158 images of cells from 67 modules of the Tubarão power plant were taken at 

the Tubarão power plant. 177 images of cells from 38 modules were taken on another 

PV test field in Tubarão, which is part of a project involving 8 test fields in different cli-

mates in Brazil. Several images were needed for one module, because the small light 

beam of the flashlights did not allow to illuminate a whole module at a time. 

 

Figure 20: UVF image acquired on 25/04/2022 at Tubarão with the first setup,  

about 4 cells are well-illuminated 

5.2.4 Second setup 

As the main problem of the first setup was the inhomogeneous illumination, more UVF 

flashlights were acquired. By the time of this work, the supply of UV-lights was a chal-

lenge. Especially large-area or high-powered UV-light sources are not or very rarely pro-

duced and sold in Southern America. To avoid long delivery times and custom issues, 

more UV flashlights were bought and used throughout this project. 

The second setup consisted of 5 flashlights, with 156 UV LEDs in total, see Figure 21: 

 

Figure 21: Second setup composed of three 18 UV-LED flashlights and two 51 UV-LED flashlights 

Sources: Image bottom left: Amazon, product image of the seller ‘NVTED’, accessed 27/07/2022; Image top left: Amazon, product image 

of the seller ‘corion’, accessed 14/07/2022 
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The second setup was used to take some whole-module images at the PV laboratory of 

the UFSC in Florianópolis. But as exactly these images were taken again with the third 

setup with better illumination, the images of the third setup were finally used and the 

ones from the second setup were discarded. 

5.2.5 Third Setup, applied at the Fotovoltaica/UFSC laboratory 

The third setup consisted of 7 flashlights with 258 LEDs in total. The flashlights were 

distributed over the same metal tripod structure as before, and a professional camera 

was used, setting a longer aperture time. Some of the photos were taken by two persons, 

one lifting the UV lights’ structure, the other person taking the photo. 

As mentioned before, this setup allowed to acquire better whole-module images at Foto-

voltaica/UFSC in Florianópolis (see Figure 22).  

 

Figure 22: Whole-module UVF image taken with the third setup at the Fotovoltaica/UFSC PV laboratory, 

Florianópolis, 20/06/2022 

5.2.6 Comparisons and Conclusions on setups 

Homogeneity and power of the UV illumination turned out to be the most important fac-

tors when taking UVF images. These two factors generally allow a a better image acqui-

sition with increasing size and price of the UV lights used. Table 4 compares the setups 

from the benchmark and the setups from this project, ranked by their scale. 
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Table 4: Comparison of experimental setups from literature/this project 

Light source Price  

(lights + 

structure) 

Illuminated area Throughput 

[modules/hour] 

Project 

2 flashlights, 

(=102 LEDs) 

20-30 $ 4-16 cells about 45*  First setup (this project) 

5 flashlights, 

(= 156 LEDs) 

50-80 $ about 20 cells about 45* Second setup (this project) 

7 flashlights,  

(=258 LEDs) 

70-90 $ about one module, 

30 - 45 cells well  

illuminated 

about 45* Third setup (this project) 

hood structure + 

2 LED arrays 

50-250 $ 

(estimated) 

1 module  

(60 cells) 

up to 200 Setup of Morlier et al. for 

daylight inspection, [6], 

Northern Germany, 2017 

monopod with 

photography flash 

<3.500 $ up to 5 modules 1000 (one row) 

2000 (two rows) 

Setup of Gilleland et al., 

USA, 2019 [1], p.5 

drone with UV-

LEDs 

3.000-

6.000 $  

(estimated) 

12 – 16 modules, 

depending on flight 

height 

Up to 720 

(assuming 6 bat-

tery changes, flight 

time 8-10 min) 

Drone setup of Köntges, 

Morlier et al. [5] p.15 

* The throughput of 45 modules/hour with the setups of this project were calculated 

based on experimental trials trying to optimize image quality, not aiming at a high 

throughput, so they are not representative, as image acquisition could be done more 

rapidly. 

Note: the price variances of 20 $ or more are due to price differences of different sellers 

and depend on which quality the tripod shall have. 

In this comparison, the camera price is purposely excluded, because in the current pro-

ject, smartphone cameras performed nearly as well as professional cameras. With the 

third setup, a professional camera was used because the aperture time could be set 

easier and the lens itself is larger, so that more light can be caught. 

It is assumed that a smartphone or professional camera is already present in most of the 

PV laboratories or PV inspection companies (e.g., from PL or EL image acquisition). 

Furthermore, it can be assumed that (within a certain range) a high camera price differ-

ence does not directly provide an equivalent quality improvement, as the UVF patterns 

observed in this project were clearly visible by the human eye and generally not as de-

tailed as EL images. 
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5.3 Processing of UVF images 

At first, it was tried to adapt available image processing tools from previous studies. Es-

pecially OpenUVF and PV Vision, mentioned in Section 4.5.1 and 4.5.2 . Various issues 

were faced at installing and adapting these tools to the UVF images of this project. Due 

to installation problems, these tools could not be used here.  

Based these issues and the project goals of this work, goals/criteria were set for the 

design of a new tool: 

Criteria for Image Processing Tools: 

• Automatization: high throughputs possible, few manual operations; 

• Efficiency: performance at the given task, computational effort, processing time, ac-

curacy of defect detection, performance compared to a human evaluating the im-

ages; 

• Generalization: adaptability/compatibility with UVF images from other setups; 

• Usability: user-friendliness (e.g. graphical surface), simplicity of the programming 

surface (e.g. using a high-end API like keras instead of tensorflow) or conciseness 

of scripts and codes, quality of the documentation. 

5.4 Testing and evaluation the tool OpenUVF 

The tool OpenUVF, by Gilleland et al. [1] was well-automatized – two to three scripts 

needed to be executed, some in Python, some in Matlab. OpenUVF was efficient on the 

images of the developers (91,7 % accuracy [1] p.9). However, it failed to detect the mod-

ule contours in images of this project. So, probably the morphological operations used 

need to be adapted and supposedly the classification network retrained. So, it is not yet 

generalized and in most of the cases it probably cannot be applied to images from an-

other setup without adaptations6. It should be noted that generalization is often very hard 

to achieve in Computer Vision and Deep Learning tasks and probably the most difficult 

goal in the list above. 

In the present form, it is hard for a beginner user to understand and apply OpenUVF, 

because of its short documentation the usage of tensorflow without API. During this pro-

ject, contact was established to the developers, and their help via instructions by e-mail 

helped to get started with the tool. The developers pointed out that during their project, 

the time-resources were insufficient for a more complete documentation. 

These obstacles led to a change in the strategy of this project: instead of adapting a 

present tool, a new one shall be developed, with special attention to the set criteria. 

 
6 It should be noted that this is hard to achieve, and generally can only be achieved by training 

on a large-scale image databank of UVF images from different climates and countries. 
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6 Results 

The observed UVF patterns including visible encapsulant defects and the developed im-

age processing workflow are presented and discussed in this section. 

6.1 Observed UVF patterns 

In this work, the square pattern was present in the great majority of the cases (70-90%), 

some showing a transient state between square and ring pattern, a minority (10-20%) 

showing only the ring pattern, and the rest showing no UV Fluorescence. A few modules 

arbitrarily showed some cells with an intense square pattern and other cells without any 

fluorescence at all, see Figure 23. 

Figure 23 shows the main UVF patterns observed at the test field and power plant in 

Tubarão (from left to right): the square pattern, the square pattern with defects (here 

broken front glass), the rim (or ring) pattern and some cells arbitrarily showing no UVF 

or UVF in the square pattern within one module. 

 

Figure 23: UVF patterns observed at the test field and power plant in Tubarão 

Exact percentages for each UVF patterns’ share are not named here, because only a 

small share of the modules was inspected and consequently, they are not representative 

for the whole power plant. In addition to this, transient patterns were observed, showing 

UVF in a square pattern with a brighter rim, visible in Figure 24, at the top left. It is as-

sumed that the square pattern slowly turns into the rim pattern, due superimposing deg-

radation effects7. Likewise, these transient images could not be clearly classified into one 

of the two patterns. 

Consequently, it was decided to focus the current research on the defect detection on 

the square pattern. On the bright square area, encapsulant defects are easily visible due 

to the photobleaching they cause.  

  

 
7 The exact reasons for this remain unclear, maybe the UV absorber or oxygen diffusion ways 

play a role here. 



Results  UVF Imagery of PV cells (Timon Benz) 

36 

 

The following (assumed) defects could be observed on the square pattern: 

 

Figure 24: Encapsulant defects observed on the UVF square pattern: (from left to right). 

Top: busbar corrosion and lateral leakage, cracked front glass, cracks across the cell. 

Bottom: single circular spots of photobleaching, sometimes merging along a line (crack). 

The formation of cracks and busbar corrosion causing photobleaching along lines across 

the square region has been described by [1] and single black spots were observed by 

[5], p.3. Köntges et al. [5] showed exemplarily that a black spot on the UVF image lies 

on top of a 1-2 mm cell crack seen on the EL image [5], p.3. So, it can be assumed that 

at the dark spots, the encapsulant is damaged, e.g. by a crack or a puncture. Humidity 

and/or oxygen enter and possibly the cell has a cell crack already or is developing sec-

ondary defects such as corrosion due to the leakage of humidity/oxygen. 

Due to the lack of a large-scale image data acquisition, a detailed analysis of the case-

sensitivity by comparing UVF patterns with those from literature could not be performed 

in this project. The development of an image processing tool shall enable this in the 

future. 

6.2 Automatized Image Processing Pipeline 

For the development of a UVF-processing tool, OpenCV was chosen as image pro-

cessing library and Python as programming language. This is a common choice for be-

ginners and students, ensuring a good readability and usability of the developed codes. 

In order to allow a concise overview on the program workflow, the program should only 

consist of a few scripts, in this case three (see Figure 25). The first script has the aim to 

get the module contour and to do perspective correction on the module. This is an im-

portant pre-processing step ensuring that the module and the cells aren’t distorted, but 

clean-shaped geometric as if the camera was directed in a right angle (90°) on the mod-

ule plane. The second script has the aim to get cell contours and to extract images of 



Results  UVF Imagery of PV cells (Timon Benz) 

37 

 

single cells (cropping), both on the original image, as well as on a thresholded binary 

(black and white) image. The third script creates, trains and evaluates a Convolutional 

Neural Network (CNN) performing binary classification stating whether a cell is defect or 

not, see Figure 25. 

 

Figure 25: Overview on the 3 main steps (scripts) of this project: perspective correction on the module image, 

cropping cell images and classifying cell images with a CNN 

These three scripts are explained stepwise in the following sections, starting with the 

script for perspective correction in this section (6.2). The second script is explained in 

6.3 and the third in section 6.4. The first two scripts use the library OpenCV, the third 

uses keras. The appendix sections 8.1 to 8.3 contain the full code of the respective 

scripts. 

At this point, it should be noted that generally, other processing pathways are possible 

as well, for example object detection of cells could be performed directly on the original 

image. Because of the complexity and high computational effort, this option was not im-

plemented in this project. 

6.2.1 General settings, importing libraries and loading the original image 

First, the libraries ‘cv2’ (OpenCV2), ‘numpy’ (numerical python) and ‘pyplot’ (python plot-

ting) are imported. Installing these libraries can be done by “pip install [package name]” 

commands, or “conda install […]” in case you are using an Anaconda virtual environ-

ment. The latter is recommended and was done in this project, so that the libraries for 

different projects do not interfere with each other.  

 

import cv2 

import numpy as np 

import matplotlib.pyplot as plt 
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A customized function for displaying images was developed, which (by default) portrays 

images in 10 % of their original size. This small percentage was chosen because images 

of high resolution (HDR, 4000x3000 pixels) were used. The final command “waitKey(0)” 

affects that the image is shown until any keyboard button is pressed. 

def custom_imshow(title, img, perc=0.1): 

   w = img.shape[1]  # original width 

   h = img.shape[0]  # original height 

   # downscaling of the window size & showing the original image 

   WW = int(w * perc) 

   HH = int(h * perc) 

   cv2.namedWindow(title, cv2.WINDOW_NORMAL) 

   cv2.resizeWindow(title, WW, HH) 

   cv2.imshow(title, img) 

   cv2.waitKey(0) 

 

At the top of the script a section with general settings was included, to change the most 

important processing parameters without scrolling down to the respective section each 

time. The parameter ‘SHOW’ determines whether created images in intermediate steps 

shall be shown on the screen or not. Similarly, the parameter ‘SAVE’ determines 

whether these intermediate images shall be saved to the workspace directory. 

The other parameters are duly explained in the respective sections. 

### GENERAL - SETTINGS 

SHOW = True 

SAVE = True 

take_green_channel = True 

simple_thresh = 150 

G_thresh = 105 

contour_limit = 240 

EPSILON = 0.05 

To start the pre-processing, an image is saved in the current working directory (the folder 

in which the Python script is saved, too). The original image is now accessible as a var-

iable and shown on the screen.  

 

### 1.) LOAD ORIGINAL image 

img_name = 'DSC_0650' 

img_original = cv2.imread(img_name + '.JPG') 

custom_imshow(img_name + " original", img_original) 

 

The example image is shown in Figure 22 and was taken with the third setup at the 

fotovoltaica/UFSC Laboratory in Florianópolis. 
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6.2.2 Brightness correction 

In this project, most of the images have an inhomogeneous illumination, due to the prob-

lems at buying a large-area UV-light mentioned in section 0. To compensate this inho-

mogeneous illumination, brightness correction techniques are applied on the original im-

age.  

As all images of this project were taken at night or in a dark room, and as the UVF signal 

is not very bright, the original image was made brighter using the so-called gamma 

method. The gamma method is an exponential scaling using (1/gamma) as exponent 

[16]: 

𝑜𝑢𝑡𝑝𝑢𝑡 = (
𝑖𝑛𝑝𝑢𝑡

255
)

1
𝑔𝑎𝑚𝑚𝑎 ∙ 255 

In the formula above, ‘input’ is the pixel value in the original image and the output is 

stored as pixel value on the output image [16]. In this project, gamma values of 1.5, 2.5 

and 3.5 were used. These values were found and adapted manually by trial-and-error 

and visual evaluation of the obtained image quality. The code implementing this in a 

function ’gammaCorrection()’ was adapted from a tutorial presented in [16].  

Furthermore, the colour channels were equalized in a step called “colour histogram 

equalization”. This affects that the pixel intensities of the R, G and B channel are normal-

ized. To implement this, the code of the function “equalize_hist_color()” was taken from 

the respective book section in “Mastering OpenCV”, see [17], p.199ff. The code for the 

brightness correction can be found within the full script in the appendix, section 8.1. 

The images with brightness correction using different values of gamma are shown in 

Figure 26: 

 

Figure 26: Brightness correction: original image (top left), gamma=1.5 (top right), gamma=2.5 (bottom left) 

and both gamma=2.5 and colour histogram equalization (bottom right) 
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For the image processing in this project, gamma=2.5 was chosen and colour histogram 

equalization applied afterwards, as shown in Figure 26 on the bottom right. 

6.2.3 Extracting the green colour channel or converting to grey scale 

To reduce the amount of information and to perform thresholding and contour detection 

later, transforming the image to grey scale is needed. For this, the function ‘cvtColor()’ 

from cv2 can be used to convert the colour image from RGB-format to grayscale. 

For a more detailed analysis in this project, the brightness-corrected and colour-histo-

gram-equalized images were split into colour channels. In other words, the layers of red 

pixels, green and blue pixels were each taken separately and interpreted and shown as 

a greyscale image. The implementation using array-slicing is inspired by code sections 

in [17]. 

### 3.A) Extracting the green colour channel 

B = img[:, :, 0]# splitting into colour channels 

G = img[:, :, 1] 

R = img[:, :, 2] 

# img_without_red = img[:, :, 0] 

 

if take_green_channel: 

   custom_imshow('GREEN channel', G) 

   cv2.imwrite(img_name+'_GREEN channel.jpg', G) 

   #custom_imshow('RED channel', R) 

   if SAVE: cv2.imwrite(img_name+'_RED channel.jpg', R) 

   #custom_imshow('BLUE channel', B) 

   if SAVE: cv2.imwrite(img_name+'_BLUE channel.jpg', B) 

   img_name = img_name + "_G" 

   simple_thresh=G_thresh 

   img_gray = G 

 

### 3.B) GRASCALE 

if take_green_channel==False: 

   img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) 

else: 

   img_gray = G 

As can be seen in this code section, extracting the green colour channel was treated as 

an alternative to grayscaling, and controlled via the logical parameter ‘take_green_chan-

nel’, set in the general settings at the beginning of the script. 

This colour-channel-splitting allowed interesting observations on the acquired colour 

channel images, see Figure 27. 

 

Figure 27: Blue, green and red colour channel of the brightness-corrected image 
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The blue channel seems to show light which has been reflected on the module glass 

surface, nearly without alteration, especially without significant energy loss, so that the 

wavelength is not increased, and the colour remains blue. 

On the green colour channel, the UVF-pattern appears very intensely and with a high 

contrast. This observation suits to the theory of light-absorption and re-emission during 

the effect of fluorescence: the blue/UV excitation light is absorbed in the outer atomic 

shells of the substances (degradation products) in the EVA, and afterwards re-emitted 

with a longer wavelength and less energy. This wavelength increase affects a colour 

change from the UV/blue excitation light to the green UVF signal. 

The red channel shows scattered light and, if present, ambient orange/red light sources. 

When this image was taken, there was an orange security light in the back of the pho-

tographer. This light can be seen clearly on the red colour channel, especially by the 

shadow of the photographer on the module in the background (see Figure 27). The UVF 

light did not create this shadow, because it was in front of the photographer. Apart from 

disturbing light, scattered light is shown, diffuse light that has been reflected several 

times and therefore has an increased wavelength and red colour. 

It should be noted that the red colour channel can be eliminated (set to zero), as in the 

commented line creating ‘img_without_red’. However, in this project, mostly the green 

colour channel was used. 

6.2.4 Inverting 

As the pre-processing prepares the contour detection, a definition for foreground and 

background is needed, with the contour as the separating line (border) of an object in 

the foreground. The contour can be understood as the outline or silhouette, distinguish-

ing a shape from the background. In OpenCV by default white objects are considered 

the foreground and black areas the background. 

On the greyscale image, the module frame appears bright and the background dark. So, 

at the first glance this is a favourable condition for contour detection according to the 

above definition. But as one module frame is close to the others, there is no clear edge 

between the module frame(s) and the background. On the other hand, the inner edge 

between the frame and the lateral PV cells has a well-pronounced contrast and sharp-

ness. So, the module contour shall be drawn along the inner border of the module frame. 

To have the PV cells as bright foreground and the frame as background, the grayscale 

image is inverted. The inversion can be done by calling the built-in function “bitwise_not” 

from OpenCV [17]: 

 

In step 3, variables are named/overwritten respectively when taking the green channel: 

if take_green_channel: 

   […] 

   img_gray = G 

   simple_thresh=G_thresh 
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   […] 

### 4.) INVERTING 

img = cv2.bitwise_not(img_gray) 

title = img_name + " inverted grayscale after mB and dilate" 

if SHOW: custom_imshow(title, img) 

if SAVE: cv2.imwrite(title+'.jpg', img) 

 

Though “bitwise_not” can be the logical inversion (1 to 0 and vice versa), it performs an 

inversion of the greyscale image here. 

The resulting image, either the inverted grayscale image or the inverted green colour 

channel, shows a high contrast at module borders and cell borders. Figure 28 shows the 

inverted green colour channel. The high contrast and sharp edges are favourable condi-

tions for the contour detection later. 

 

Figure 28: Inverted image (pre-processed green colour channel) 

6.2.5 Thresholding 

Although contour detection is technically possible at this stage, it is not recommended, 

because it creates rough, unsteady contours. Commonly the last step before contour 

detection is thresholding. Thresholding generally denominates any method that converts 

a greyscale image (with pixel values 0…255) to a black and white image (with pixel val-

ues either 0 or 255). 

Simple thresholding sets a limit for pixel values, for example 110, and any pixel with a 

value above is set to 255 (white) and any pixel value underneath is set to 0 (black). The 

advantage of this method is its simplicity, both for understanding and implementation. 

The disadvantage is that it cannot cope with inhomogeneous images, e.g. being one 

region brighter than others. So, simple thresholding only preserves well-pronounced 

edges. 
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Figure 29 shows the simple thresholding on the green colour channel. As desired, mod-

ule (and cell) borders are well visible. 

 

Figure 29: Simple thresholding (thresh=105) on the inverted green colour channel 

There are several more elaborated and complex thresholding techniques, such as adap-

tive thresholding, Otsu’s method and canny edge detection. As they are more so-

phisticated, they allow to preserve minor edges that are more difficult to perceive. Alt-

hough they form the state-of-the-art thresholding techniques and are highly powerful, 

they were not used in this project: after a series of trials, it was noted that the resulting 

black-white images contain too much information, and too many contours were detected. 

So, they could be estimated as ‘too elaborated’ for the simple detection of the module 

contour in this step. But naturally, these methods offer potential for more generalization, 

when developing a tool for diverse UVF images, taken with different setups at different 

sites. 

In this project, simple thresholding was applied following the instructions in [17] and 

adapting the thresh value manually by trial-and-error and visual evaluation of the black-

white image quality. For the implementation, the function cv2.threshold() can be used, 

specifying the thresh value:  

 

### 5.) SIMPLE THRESHOLDING 

th, img_thresh = cv2.threshold(img, simple_thresh, 255, cv2.THRESH_BI-

NARY) 

title = img_name + " simple thresh "+str(simple_thresh) 

custom_imshow(title, img_thresh) 

if SHOW: custom_imshow(title, img_thresh) 

if SAVE: cv2.imwrite(title + ".jpg", img_thresh) 

 

In the script, the “simple_thresh” variable with the value 150 is applied after grayscaling, 

and “G_thresh” with the value 105 if the green colour channel was taken, because only 

one colour channel yields lower pixel intensities than all three. These thresh-variables 

are defined at the top of the script in the section for general settings. 
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6.2.6 Contour Detection and Morphological Operations 

As this step is more complex, the code explanations are divided into three sections: 

A.) Contour Detection and Approximation 

B.) Morphological Operations 

C.) Loop of Morphological Operations and Contour Detection 

These (development) steps and concepts are explained in the following sections. 

A.) Contour Detection and Approximation 

OpenCV offers the function ‘cv2.findContours()’ to perform contour detection on grey-

scale or black-and-white images. Explanation on parameters and details are available in 

the OpenCV documentation and in manuals such as [17]. 

To customize and apply ‘cv2.findContours()’, a function ‘detect_contours()’ was written, 

enclosing contour detection, approximation and plotting the results. 

First, the function differentiates between detection of all or only external contours. In our 

case, the module contour is an external contour (later cell contours are external, too). 

The variable ‘contours’ saves the returned list of [x, y] coordinates of each point of each 

contour. The length of the contour is the number of its points. If, as a very simplistic 

example, there are 3 contours of length 4, 3 and 7, the variable contour will look like this: 

contours = [ [ [x1, y1], [x2, y2], [x3, y3], [x4, y4] ], 

                   [ [x1, y1], [x2, y2], [x3, y3] ], 

                    [ [x1, y1], [x2, y2], [x3, y3], [x4, y4], [x5, y5], [x6, y6], [x7, y7] ] ] 

The contours that ‘cv2.findContours()’ hands back for the binarized UVF images are far 

more and far longer. In this project, there were generally 1000 to 100000 contours of 

lengths between 3 and a few hundreds or thousands of points. Each point is one pixel of 

the contour line. These are rough estimations of the dimensions; the number and length 

of contours highly depend on the input image in the concrete case. So, due to noise, far 

too many contours were detected and the number and length of the contours need to be 

reduced. On the example image, about 34700 contours were detected, see Figure 30. 

 

Figure 30: Contour detection on the ‘raw‘ thresholded image: 34700 (rounded) contours were detected 
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To reduce the length of contours (the number of points per contour) the contours can be 

approximated (represented by fewer points). The function ‘cv2.findContours()’ offers 

such an approximation in form of the keyword-argument ‘CHAIN_APPROX_SIMPLE’, 

which helps as a first step to reduce the amount of data. 

In case of the module contour, which is geometric and four-cornered, only the four corner 

points should be needed to describe its whole shape. For a more drastic simplification, 

a polynomial approximation ‘cv2.approxPolyDP()’ is used. As first argument it takes the 

contour itself, and secondly a tolerance called epsilon:  

 

cv2.approxPolyDP(cnt, epsilon, True) 

The lower epsilon is, the closer the approximation remains to the original contour and 

vice-versa [18], see Figure 31. 

 

Figure 31: The influence of the tolerance epsilon at contour approximation, [18] 

So, high values for epsilon allow the approximation to deviate more from the original 

contour and the approximated contour becomes more geometrical [18]. In this project, 

5-15 % of the circumference (arclength) of the contour are taken as values for epsilon, 

by default 5%. The parameter epsilon is also included in the list of settings at the begin-

ning of the script. 

The reason for the high number of detected contours is the noise in the image. Small 

white and black noise dots, that were not eliminated by thresholding are detected as 

contours. To eliminate the image noise, morphological operations are used to simplify 

the black-white image further. In this script, simplification also aims at erasing cell con-

tours to have a clear module contour. 

 

B.) Morphological Operations 

Morphological operations (also: morphological transformations) are kernels that are 

passed over binary (black-and-white) images altering the shapes or stressing structures 

such as object borders in a specific way [17]. 

Two basic morphological operations are dilation and erosion. Dilation expands white ar-

eas (foreground objects) while erosion expands black areas (the background regions) 

[17]. The combination of first eroding and then dilating is called opening, the other way 

around (first dilating and then eroding) is called closing [17]. The opening and closing 



Results  UVF Imagery of PV cells (Timon Benz) 

46 

 

operations use the same kernel for both steps [17]. There are more morphological oper-

ations such as gradient operations, and every morphological operation can be custom-

ized by its varying the kernel size and kernel structure. More details are available in the 

respective literature, e.g. [17] as an introduction. 

In the present case, the aim is to eliminate the black cell borders and salt and pepper 

noise. Therefore, a combination of the dilation operation and the so-called medianBlur 

filter were applied. Likewise, white regions are expanded and noise which is smaller than 

the kernel size of the medianBlur-filter is eliminated.  

C.) Loop of Morphological Operations and Contour Detection 

In the presented script, dilation, filtering and contour detection are performed in a loop, 

to stepwise simplify the image and monitor the obtained contours. The number of de-

tected contours is monitored and considered as a measure for the simplicity of the image. 

In this loop, the following compromise is needed: the image needs to be simplified 

enough, to facilitate the contour detection but not too much in order to not alter the image 

in a way that the obtained contour becomes unprecise, meaning that it does not lay ex-

actly over the module contour in the original image. In addition to this, a too long series 

of morphological operations can ‘destroy’ the module contour i.e. by merging its area 

with the area of a neighbouring module. With respect to these aims and limitations, two 

abortion criteria were applied: the loop is stopped if either the contour limit or the iteration 

limit is reached, see Figure 32. 

 

Figure 32: Loop of morphological operations and contour detection, as implemented in this project 

The contour limit and the iterations limit can be varied, based on the amount of noise 

and consequently the extend of simplification needed. As one main parameter, the “con-

tour_limit” also appears in the general settings section at the top of the script. The itera-

tions limit was kept to 20 and normally is not reached. The following code implements 

this loop with the two abortion conditions: 

 

### 6.)  MORPHOLOGICAL OPERATIONS LOOP ---------------- 

max_iter = 20 

# create the kernel for smoothing images 

kernel_averaging_10_10 = np.ones((10, 10), np.float32) / 100 

kernel_averaging_5_5 = np.ones((5, 5), np.float32) / 25 
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kernel_size_3_3 = (3, 3) 

mB_kernel_size = 9 

 

img = img_thresh # choose input image 

for i in range(max_iter): 

   img = dilate(img, cv2.MORPH_CROSS, kernel_size_3_3) 

   img = cv2.medianBlur(img, mB_kernel_size) 

   total_nr_contours, contours = detect_contours(img, 

                                         which='external', 

                                         eps=EPSILON, 

                                         iter=i + 1, 

                                         draw=True, 

                                         save=True, 

                                         plots=False) 

   # ABORTION criterion: contour limit 

   if total_nr_contours <= contour_limit: 

      print("Less than " + str(contour_limit) + " contours reached, 

quitting morphology loop at iteration " + str( 

         i + 1)) 

      stop_iter = i + 1 

      break 

The number of iterations is limited within the head of the loop, while the contour limit is 

implemented via an if-statement with a break command. 

After the loop execution, the simplified image has less contours than the specified limit. 

Depending on the image (i.e. the illumination and thickness of the module frame), the 

module contour can be broken during this simplification. In that case, the contour limit 

needs to be adjusted manually. For the current image, a contour limit of 240 contours 

was used, because after further morphological operations the contour opened at the 

lower right anchoring clip. The other settings in this loop (which morph. operations, kernel 

sizes etc.) need to be adjusted whenever images from a different setup or module type 

are processed. In the present case, the loop stopped after 5 iterations, reaching less 

than 240 contours (231), see Figure 33. 

 

Figure 33: The simplified binary image produced by the loop of morphological operations after 5 iterations; 

231 external contours are detected (contour limit set to 240 here) 
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The contour limit is a highly relevant parameter here: if it is too high, the image is not 

simplified enough, and the module contour is not yet clearly visible (e.g., still attached to 

some cells). If the contour limit is too low, the module contour is probably open at some 

point and then cannot be detected. If the image quality is bad, this range of possible 

contour limit values might be very narrow or disappear. In the latter case, a detection of 

the module contour with this script is not possible and the pre-processing needs to be 

altered. For this reason, homogeneous illumination and reasonable image quality are 

important. 

6.2.7 Filtering contours by criteria 

The desired module contour is now ‘filtered out’ from the remaining contours. This can 

be done by accessing the properties of the obtained contours and checking specific con-

ditions for the module contour. The more specifications are done for the module contour, 

the better will work the contour filtering. 

The following criteria were used to filter out the module contour: 

7.A) The module contour has 4 corners. 

7.B) The module contour area is within 20 to 95 % of the total image area. 

7.C) Opposite sides of the module contour do not deviate more than 60° and 40° in their 

directions. (parallelism) 

7.D) The module contour is the largest contour of those fulfilling the conditions A to C. 

In the example image, the criterion 7.A already reduces the number of contours from 231 

to 108, see Figure 34. 

 

Figure 34: When filtering for 4-cornered contour approximations (criterion 7.A), 108 of 231 contour approxi-

mations remain 
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The criteria are formulated as logical statements and implemented as such, so that each 

criterion is either true or false. As the formulation of 7.D implicates, a logical AND-com-

bination of all the criteria is used to decide which contour is the module contour. 

While the criteria 7.A, 7.B and 7.D could be easily implemented by accessing the contour 

properties via OpenCV, the implementation of 7.C (parallelism) was done manually by 

defining and calling functions. The aim of 7.C is to check whether opposite sides are 

relatively parallel, to exclude very distorted contours and to allow nearly trapezoidal con-

tours.  Nearly trapezoidal contours occur frequently due to the camera perspective and 

the inclination of the module. 

As a first step, the four corner points are identified, by assigning them to variables named 

after the corners, e.g. “lower_left” or “upper_right”. Then, each side is computed as a 

vector in polar coordinates, with its magnitude and its angle towards the positive x-direc-

tion. The difference between these angles for left/right and upper/lower side are calcu-

lated respectively. These two angular differences specify the difference of the direction 

of opposite sides and are measures for the parallelism. In this project, module contours 

typically were nearly trapezoidal, with left and right-side directions deviating more than 

upper and lower side directions, which are nearly horizontal. So, for the larger angular 

difference a limit of 60° is set, for the lower angular difference 40° respectively. These 

limits were found experimentally and sometimes elevated to 60° and 80°, relying more 

on the other contour criteria. 

When applying all the contour criteria to the approximated contours, the module contour 

is extracted, see Figure 35. 

 

Figure 35: The module contour, filtered out by applying all the contour criteria 

On the majority of the whole-module images of this project, the contour filtering could be 

applied successfully. Whenever the module contour was not found, it was more likely 

due to bad illumination or pre-processing (thresholding and morphological operations) 

that the module contour was not clearly visible. It turned out to be a good strategy to use 

several criteria for the contour, each one having a certain tolerance and to then build the 
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logical AND-connection of all of them. Likewise, all the real-world knowledge on the 

sought contour is applied in the code. 

The code for contour filtering is added in the appendix, in section 8.1 within the full script. 

6.2.8 Perspective transformation 

As the last step of the module-processing script, a perspective transformation is applied, 

cropping out the module and correcting the camera perspective.  

Perspective correction means that the image is transformed in a way that the apparent 

angle between camera direction and module plane is corrected to 90°, orthogonally di-

rected at the module plane. 

The perspective transformation is performed using built-in functions of OpenCV and ori-

enteering at tutorials on the implementation, especially [19]. 

To prepare the perspective transformation, the four corner points are identified, side 

lengths calculated as well as average width (dx) and average height (dy). The coordi-

nates of the 4 identified points forming the module contour are the input points; the target 

points are synthesized from average width and height: 

 

target_points = np.float32([[0, 0], [dx, 0], [0, dy], [dx, dy]]) 

 

A transformation matrix is computed applying the function “cv2.getPerspectiveTrans-

form()” on the input and output points. 

 

matrix = cv2.getPerspectiveTransform(input_points_rim, target_points) 

 

The function “cv2.warpPerspective()” is applied on the input image, using the obtained 

transformation matrix and specifying the target image size. 

 

img_color_out = cv2.warpPerspective(img_color_out, matrix, size) 

 

The obtained perspective-corrected image is shown in Figure 36 on the right. 

 

Figure 36: Original image, module contour and perspective corrected module image 
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The complete code for the perspective correction step is included in the appendix, sec-

tion 8.3. 

6.3 Cropping cell images from a pre-processed module image 

The second pipeline starts with the perspective-corrected module image and has the aim 

to cut out (crop) images of single cells. For that, the detection of the cell contours is 

necessary. The structure of this cell-cropping pipeline is very similar to the one of the 

module-processing one. The full script is included in the appendix, section 8.2. The main 

steps are portrayed schematically in Figure 37: 

 

Figure 37: Overview on the cell cropping pipeline (the second script) 

In fact, this script was developed based on the module-processing script and altered to 

get cell contours and crop images of single cells. The pre-processing steps 1 to 5 are 

identical to the module-processing script. For later use on large-scale datasets, a pre-

processed and perspective-corrected image can be handed over. This saves the com-

putational effort for executing steps 1 to 5 again. However, in this experimental stage, 

this approach was chosen to have more flexibility and to occasionally be able to modify 

the pre-processing of each script. 

6.3.1 Morphological operations to intensify cell borders 

In processing step “6.) + 7.) Morphological and contour filtering Loop”, the aim is now to 

reinforce cell borders, not the module border. Therefore, the morphological operations 

need to be adapted. Previously, they erased cell borders to get the module borders, now 

the aim is to strengthen cell borders. 

Generally, the dilation operation and the medianBlur-filter can also be used here, but 

when applying them for noise reduction, the following problem occurs: some of the salt 
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and pepper noise dots are larger than the distance between two neighbouring cells (the 

border). So, if a smaller filter kernel is applied, not all the noise is filtered out. Contrarily, 

if a larger filter kernel is used, it erases the borders between two neighbouring cells and 

their contours melt together. 

The simplification has these limitations, and it is hard to generally estimate which extent 

of simplification is sufficient and which extent is too high, judging by only the total number 

of detected contours as was done before. In other words, it is hard to determine auto-

matically when to stop the morphological loop, having simplified the image enough but 

not too much. 

6.3.2 Filtering cell contours by criteria 

To solve this problem of when to stop the loop, the contour filtering step was included 

into the loop of contour detection and morphological operations. In form of pseudocode, 

the loop of steps 6 and 7 executes the following steps repeatedly, see steps A-F in Figure 

37: 

A dilate  

B apply the medianBlur filter 

C detect all contours and approximate them 

D filter for true cell contours using cell contour criteria 

E count the true cell contours and save the number in an array as a history 

F if the current n° cell contours is equal or higher than the previous one, continue with 

step 1, else quit the loop execution and continue with the program 

The steps A to C are generally performed in the same way as before, with the exception 

that eventually the kernel sizes (of dilation and the medianBlur filter) were increased 

stepwise or first increased and later decreased, to enhance and speed up the process 

of reinforcing cell borders. These options were not included in the final codes, because 

they also bring the danger of rapidly destroying cell contours. 

The last step (F) relies on the fact that at some point, the morphological operations will 

destroy a cell contour by merging two neighbouring cells together. If that happens, this 

last step (F) re-establishes the previous list of all cell contours and quits the loop, so that 

the maximum number of detected cell contours is used. 

Furthermore, the contour criteria in step 4 were adapted to be cell contour criteria, using 

the following 3 criteria: 

• A cell contour has 4 corners. 

• In a cell contour, opposite side lengths are equal (rhombus or square), allowing a 

certain tolerance. 
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• A cell contour has about the area of 1/60 of the module area. 

The last criterion uses the fact that each of the inspected modules had 60 cells. The 

number should of course be adapted in the code if different modules are inspected. In 

the great majority of the cases, these criteria were sufficient for filtering out true cell con-

tours in the current project. Single erroneous cell contours creating distorted images 

need to be deleted manually (by a human). 

For observations during the development of the criteria and for the validation of their 

efficiency, parameters supplying information on the contours were saved as histories (in 

arrays, one entry for each loop execution) and can be plotted. The most important history 

parameter is the number of true cell contours, as this parameter is used in the abortion 

criterion. Examples for other parameters are the total number of contours, the (average) 

number of points per contour or the distribution of the contour areas. 

6.3.3 Cropping each cell by perspective transformation functions 

The previous loop delivers a list of true cell contours, having each four points indicating 

the four corners of the cell, respectively. In this last step, each cell shall be cropped out 

and the image of one single cell shall be saved. 

All the steps for that are analogous to the perspective correction of the module. The steps 

are scaled down and applied one-by-one to each detected cell. The cell images are 

saved in a folder named after the module image and with the cell index, to create indi-

vidual filenames. 

This procedure uses the fact that the perspective transformation function “cv2.warp-

Transform()” does not only correct the perspective, but also crop the image. Additionally, 

in case the perspective correction on the module image did not work perfectly, a slight 

correction is automatically applied to each cell, assuring a good image quality of each 

cell image. 

Note: It is also possible to crop images of cells directly from the original image, without 

correcting the perspective based on the module contour. At first sight, this seems more 

straight-forward and advantageously: this option would need less computational effort 

and does the tasks of the two presented scripts in only one. However, this way it is more 

difficult to distinguish true cell contours from contours around noise, especially if the 

module appears very inclined or is not homogeneously illuminated. Likewise, several 

sources of errors appear, at least when working on the images acquired in this project. 

For images acquired with more elaborated setups and better illumination, cropping cell 

images directly could be a good idea to save coding steps and computational effort. 

The cell-cropping (by perspective correction functions) is both applied on the perspec-

tive-corrected module image and on the binarized (thresholded) perspective corrected 
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module image. The obtained coloured and black-white cell images are stored in respec-

tive folders. By applying this script to several perspective-corrected module images, a 

databank of cell images can be created. 

6.4 Training a CNN on classification of UVF cell images 

With the previous scripts, cell images could be created in an automatized or semi-au-

tomatized way. The automatization aims at enabling the creation of a large databank of 

cell images. The image databank can then be used to train a Neural Network model with 

the aim of automatized defect detection, as shown in Figure 25. 

In this project, a demonstration (or prototype) script is developed that makes the decision 

whether a cell has a defect or not. This task definition can be denominated as binary 

image classification. To classify the cell images a Convolutional Neural Network (CNN) 

is trained to assign one or several tags (class names) to an image. The class names in 

this project are “defect” and “intact”. By developing the code further, a multiple classifi-

cation could be trained, to specify which defects are present on a given cell image. 

For the implementation the Deep Learning libraries keras (front-end) and tensorflow 

(backend) were chosen, to create an efficient CNN while keeping the code readable. An 

instruction on how to install keras and how to set up a deep learning coding environment 

is provided in the appendix, sections 7.1 and 7.2. 

The third and last script performs initialization, training, validation and testing of a CNN 

for cell image classification and is presented in this section step by step. This script is 

also written in python, so that all three scripts could be called from a main program or 

console later. The full code is added in the appendix, section 8.3. 

Literature recommendations for learning to know the fundamental structures and con-

cepts of Neural Networks and Convolutional Neural Networks are provided in section 7.3 

of the appendix. 

The fundamental principles of Neural Networks and convolutional neural Networks 

(CNN) were summarized in the sections 4.4.1 and 4.4.2. The code of the third and last 

script, which is based on these concepts, is presented step by step in the following sec-

tions: 6.4.1 to 6.4.6. 

The implementation and code structures of this script are based on the code examples 

in the book “Deep Learning with Keras and Python”, by François Chollet [8]. 

6.4.1 Creating a data bank of cell images 

From this section onwards, the steps of the third script are explained step by step: 

1 Annotate the images (here: by saving them in respective subfolders), (section 6.4.1) 

2 Loading labelled images from a databank (section 6.4.1) 
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3 Splitting the databank into training, validation and test dataset (section 6.4.1) 

4 Creating data generators applying data augmentation (section 6.4.2) 

5 Load and modify a pretrained neural network (section 6.4.3) 

6 Train and save the CNN model (section 6.4.4) 

7 Evaluation of the training progress (section 6.4.5) 

8 Evaluate the model on test data and do predictions (section 6.4.6) 

After these steps, the Neural Network model can be loaded and used to classify images. 

For the first step, annotation, the cell images that were created by the previous scripts 

can be manually split into the respective classes. To take a simple case, just binary clas-

sification between “intact” and “defect” cells is treated here. So, within the file manager, 

all intact cell images are copied to a folder called “intact”, all defect ones into the folder 

called “defect” (annotation). This is done manually by the operating person and a diffi-

culty appears when very small defects are present, or when there is uncertainty about 

whether the UVF pattern shows a defect or not. For simplicity and for demonstration 

purposes, these cases are left aside in this project. 

By developing this program further, respecting these cases and classification into several 

classes (one for each defect type) should be possible. 

A folder called “original” with all defect and intact images in respective subfolders needs 

to be created manually. Given the file path to this folder and a list of class names, the 

script splits the data bank into training, validation and test data sets, while respecting the 

classes as subfolders, see Figure 38. 

 

Figure 38: Schematic overview on the folder structure of the cell image data bank 

For example, 70% of the images of each class are copied to the respective subfolders 

in the training folder, 20% to the validation folder and 10% to the test folder. The three 

new folders and their subfolders are created by the script, not manually. All the copying 

commands are executed by the script as well, to save time. Only the first assignment of 

cells to classes by saving them in a respective subfolder within “original”, needs to be 

done manually by a person. The full code for this first step is in appendix, section 8.3. 
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6.4.2 Creating data generators applying data augmentation 

To create an access to train, validation and test images, image data generators are cre-

ated for each data subset. Data generators are iterable objects similar to functions that 

provide one data sample each time they are called [8]. The generators used here provide 

a batch of pre-processed images with their class name inferred from the subfolder name. 

The more image data is available, the potentially better can the CNN learn generalized 

features. So, a way of enhancing training is to enlarge the image dataset. There are three 

general approaches for this: to collect more, to synthesize or to augment data [20], see 

Figure 39. 

 

Figure 39: Three ways to enlarge image datasets [20] 

As the advantages and disadvantages in Figure 39 state, for a given image dataset, data 

augmentation probably is the most appropriate solution. Naturally, options 1 and 3, both 

collecting more real data and augmenting it, would yield the quantitatively and qualita-

tively the best dataset. In this project, only data augmentation is used. Data augmenta-

tion means to create more sample images by applying random operations such as rota-

tions, horizontal/vertical shifts or zooming into the image [8]. An overview of possible 

operations is provided by Figure 40.  

 

Figure 40: Overview on possible operations for image data augmentation, [20] 
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In this project, only geometry-based operations are used. They are implemented using 

keras’ built in options for data generators: when creating an image data generator using 

the function “ImageDataGenerator()” the operations for data augmentation can be ena-

bled and specified as key-word arguments [8]. Then, using the “flow_from_directory” ar-

gument, the respective data path is provided. Likewise, data generators for training, val-

idation and testing are created, [8]. 
### STEP 2 ### create_DataGenerators 

# image data generators with data augmentation 

from keras.preprocessing.image import ImageDataGenerator 

 

train_datagen = ImageDataGenerator(rescale=1. / 255, 

                           rotation_range=40,  # data generator with 

                           width_shift_range=0.2, 

                           height_shift_range=0.2,  # data augmentation 

                           shear_range=0.2, 

                           zoom_range=0.2, 

                           horizontal_flip=False, 

                           ) 

train_generator = train_datagen.flow_from_directory(train_dir,# configuring train gener-

ator 

                                       target_size=(150, 150), 

                                       batch_size=images_per_batch, 

                                       class_mode='categorical') 

validation_datagen = ImageDataGenerator(rescale=1. / 255)  # simple data generator 

validation_generator = validation_datagen.flow_from_directory(validation_dir, 

                                               target_size=(150, 150), 

                                               batch_size=images_per_batch, 

                                               class_mode='categorical') 

test_datagen = ImageDataGenerator(rescale=1. / 255, 

                          dtype="float32")  # simple data generator 

test_generator = test_datagen.flow_from_directory(test_dir,  # configuring 

                                      target_size=(150, 150), 

                                      batch_size=images_per_batch, 

                                      class_mode='categorical' 

                                      ) 

print("Data generators successfully created.") 

 

6.4.3 Load and modify a pretrained neural network 

An efficient method for applications of CNN is to re-train a network model that has been 

trained before, instead of training a model from scratch [8]. This technique is called trans-

fer-learning. It accelerates the training progress and allows to proceed rapidly to fine-

tuning. The pre-trained network is already able to extract features such as textures and 

shapes [8]. 

The library keras offers to load pretrained models, in the present script the so-called 

VGG16 model is loaded. To not modify the feature extraction, the layers are frozen, 

meaning that their weights cannot be modified [8]. To allow the model to learn the UVF 

patterns, two fully connected layers are added at the end of the network, each consisting 

of 256 neurons. 

### STEP 3 ### load & modify a pretrained neural network 

from keras.applications import VGG16 

from keras import optimizers 

from keras import models 

from keras import layers 

import os 

 

conv_base = VGG16(weights='imagenet',  # initializing weights  
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              include_top=False,  # whether the classifier is included 

              input_shape=(150, 150, 3))  # shape of the input image tensor 

 

model = models.Sequential() 

model.add(conv_base) 

model.add(layers.Flatten()) 

model.add(layers.Dense(256, activation='relu')) 

model.add(layers.Dense(256, activation='relu')) 

model.add(layers.Dense(len(classes_list), activation='softmax')) 

# freeze the convolutional base 

print("Number of weights before freezing weights: ", len(model.traina-

ble_weights)) 

conv_base.trainable = False 

print("Number of trainable weights after freezing weights: ", len(model.train-

able_weights)) 

 

6.4.4 Train and save the CNN model 

Before training, the CNN model needs to be compiled stating the error function (also 

called loss function), the optimizer and the error metrics. In the present case, common 

choices for image classification tasks are done (see parameters of the compile() function 

in the code).  

After compiling, the CNN model is ready to learn on the training data. The training is 

performed by calling keras’ function ‘fit_generator()’ with the respective arguments. To 

specify how many times a generator needs to be called, the ‘steps’ variables are speci-

fied. The following conditions should be fulfilled: 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑖𝑚𝑎𝑔𝑒𝑠 = 𝑠𝑡𝑒𝑝𝑠_𝑝𝑒𝑟_𝑒𝑝𝑜𝑐ℎ ∗ 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 

The “number of available images” means the number of images in the respective subset 

(training, validation and testing). So, for each subset an individual batch size can be set 

and different numbers of steps will be needed. 

Note: The variable names can deviate from the above designations: For the training data, 

the variable “batch_size” is called "images_per_batch”. 

The aim is that after (steps) batches of (batch_size) samples, all the available samples 

of the data subset have been handed over. 

### 4.) TRAIN and SAVE the CNN model 

model.compile(loss='categorical_crossentropy', 

           optimizer=optimizers.RMSprop(lr=2e-5), 

           metrics=['acc']) 

history = model.fit_generator(train_generator, 

                       steps_per_epoch=images_per_batch, 

                       epochs=10, 

                       validation_data=validation_generator, 

                       validation_steps=36) 

 

Finally, the model is saved and can be loaded afterwards and from any other script for 

later use. 
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6.4.5 Evaluation of the training progress 

The history variable that is handed back from the model.fit() command contains the ac-

curacy metrics obtained at each epoch, both on training and validation data. In this case, 

it contains the correct classification rate the model achieves on the training and validation 

image after each epoch. These metrics are used to observe and validate the training 

progress and to verify that the model performance increases. 

 

### STEP 5 ### evaluate the training progress 

# use the pyplot library to draw diagrams of the training progress and 

test results 

import matplotlib.pyplot as plt 

 

acc = history.history['acc'] 

val_acc = history.history['val_loss'] 

loss = history.history['loss'] 

val_loss = history.history['val_loss'] 

epochs = range(1, len(acc) + 1) 

plt.plot(epochs, acc, 'bo', label='training') 

plt.plot(epochs, val_acc, 'r', label='validation') 

plt.title('Correct classification rate training/validation') 

plt.legend() 

plt.figure() 

plt.plot(epochs, loss, 'bo', label='loss Training') 

plt.plot(epochs, val_loss, 'r', label='loss Validierung') 

plt.title('Loss function value training/validierung') 

plt.legend() 

plt.show() 

 

The above code section uses the pyplot library to plot the metrics, correct classification 

rate and the loss function value as graphs. Due to the random initialization of the weights, 

the diagrams can be different from execution to execution.  

 

6.4.6 Evaluate the model on test data and do predictions 

The final step of the CNN training script is to evaluate the CNN model on the test data. 

The test data are the images that have been spared so far and are still unknown to the 

CNN. This is important for judging the ability of the CNN to generalize and classify new, 

unknown cell images. Within keras, the command model.evaluate() is used, together 

with the test image data generator. This command hands back one set of performance 

metrics. Here the value of the loss function and the accuracy (correct classification rate) 

are handed back. 

### STEP 6 ### Evaluate the model on test data 

test_datagen = ImageDataGenerator(rescale=1. / 255) 

test_generator = test_datagen.flow_from_directory(test_dir, 

                                      target_size=(150, 150), 

                                      batch_size=10, 

                                      class_mode='categorical') 

test_loss, test_acc = model.evaluate_generator(test_generator, 
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steps=11) 

print('Correct classification rate on test data:', test_acc) 

 

The obtained model can be applied using, the model.predict() command of keras [21]. 

For a given image, the command hands back probabilities for each class [21]. 

By extracting the maximum prediction, the predicted class can be obtained with the re-

spective name ‘defect’/’intact’, consult the tutorial [22]. More details on the command for 

predictions are available on the webpage of the keras documentation, see [21]. 

6.5 Results of the Image Processing with the developed 

pipeline 

None of the 225 images of about 4 cells that were acquired with the first setup at 

Tubarão could be processed automatically, because the illumination is too inhomogene-

ous. This causes inhomogeneous pixel intensities, which is an obstacle for automatized 

image processing, even if brightness correction is applied. The pre-processing, espe-

cially the simple thresholding applied in this project cannot cope with these inhomoge-

neities, as the operations assume that common features (e.g., cell borders etc.) have 

similar pixel intensities across the image area. The cell borders result interrupted and 

cannot be extracted. 

In future versions, the mentioned advanced thresholding techniques could possibly solve 

this problem. This would highly increase the generalization and flexibility, allowing UVF 

images acquired with just one or a few flashlights to be evaluated automatically. 

The current version of the tool was tested on 51 whole-module images acquired at the 

laboratory Fotovoltaica/UFSC with the third setup. Of these, 35 whole-module images 

of the 7 modules from the ground row were selected manually for their good image qual-

ity. The presented processing pipeline was executed on these 32 images. In 20 cases, 

the images could be processed well, especially the module contour was precisely de-

tected and cell images could be extracted. On 9 images, the module contour was de-

tected imprecisely, so that some parts of the module were missing/cut on the perspec-

tive-corrected image. On the remaining 3 images and on samples of the initially dis-

carded images, the module contour could not be detected. The main reason was always 

inhomogeneous illumination causing interruptions in the module contour; either holes at 

the well/bad illuminated parts, at the anchoring clip or due to connection to cell borders. 

The second script for cropping cell images was executed on 10 of the obtained perspec-

tive-corrected module images. For each image, between 3 and 39 true cell contours were 

detected and the respective (binary and colour) cell images cropped. On average, 24 of 

the total 60 cells were detected and cropped on each module. Among these, no cell 

contour was detected erroneously, so that 240 high-quality cell images from 7 different 

modules were obtained, saved in a file of the respective image name. To avoid redundant 
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data, the folder with most cell images was chosen for each module, yielding 126 cell 

images, of which redundance can be excluded. 

On 22 of these 126 cell images, only the busbars were visible, no UVF. As these 22 

images do not add any information for the training of the CNN, they were discarded. 35 

clearly defect and 35 clearly intact cell images were selected, see Figure 41. 

 

Figure 41: Cell image data base of exemplarily 35 intact cells (on the left) and 35 defect cells (on the right) 

The remaining 34 images show slight or small defects or features where it is not clear 

whether they appear due to a defect or due to bad illumination. 

Here, the number of cell images (70) is not high enough to be considered as an appro-

priate image data bank for Deep Learning. When collecting more data in the future, there 

will probably be more intact cells than defect ones. Such a data base is called unbal-

anced8 data. Methods for training CNN on unbalanced data can be found in the respec-

tive literature on Deep Learning, e.g. [8]. 

For simplicity and for demonstration purposes, in this project a CNN model was trained 

only on the 35 images of each class. The training script splits the images into 22 (65%) 

for training, 8 for validation (20%) and 5 (15%) for testing in each class. 

  

 
8 Balanced training data means that the same number of samples is available for each class. 
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The training yielded the following metrics9, see Figure 42. 

 

Figure 42: Graphs of the performance metrics (correct classification rate and loss function value) during the 

training on cell image classification 

In the diagram, the epoch at which overfitting occurs, can be detected: it is the first epoch 

at which the performance on training data is better than on validation data. In the present 

case, overfitting occurs from the third epoch onwards, see Figure 42. From the third 

epoch, the network classifies training images better than validation images (see correct 

classification rates), and the loss function value on the validation data is higher than on 

training data. So, here the training is executed once more, only for two or three epochs10. 

The loss value represents the error signal that is used to correct each weight (backprop-

agation, see section 4.4.1). So, the loss value can be considered as an estimate on how 

wrong the current prediction is or how much the network can still learn. The decreasing 

loss values on the training data show that the model cannot learn more on the given 

images. To learn more, it would need more image data, not more epochs. At this point, 

the mentioned strategies for data augmentation and methods against overfitting can be 

applied to further optimize the training. 

Due to the very low number of cell images, the obtained CNN performance is not repre-

sentative for the potential of the technique. However, the correct classification rate 

obtained values, that are on average11 higher than 50% (random assignment): between 

45 and 70 %. The values change from execution to execution due to the random initial-

ization of the two fully connected layers that were added as a classifier. 

  

 
9 Note that the history of training and validation metrics vary at each execution due to the random 

initialization. 
10 This should be done while preserving the same initialization, because the optimal number of 

epochs depends on the initialized weight values. This is not implemented in the script 
presented here. Information and tutorials for implementing this can be found in [8]. 

11 based on 5 code executions 



Summary  UVF Imagery of PV cells (Timon Benz) 

63 

 

Summary 

In the course of this project, an experimental setup as well as an image processing pipe-

line were built to acquire and process UVF images.  

First, a literature review was done to explain how UVF forms and to portray the state of 

the art in PV module inspection via UV Fluorescence. Based on this benchmark, exper-

imental setups were build using UV flashlights mounted on a metal structure on top of a 

tripod. UVF images of polycrystalline PV-modules were shot at Tubarão and Florianóp-

olis in Santa Catarina in the South of Brazil. On these UVF-images, the so-called square-

pattern and ring pattern as well as various other patterns were observed. On the square 

pattern, defects in the encapsulant were well-visible on the UVF image due to the pho-

tobleaching they cause (extinction of the UVF light). The most common encapsulant de-

fects were: punctual encapsulant leakages, cracks, corroded busbars and modules 

showing some cells with/completely without any UVF. Some patterns were hard to iden-

tify and classify because they might belong to a transient state between the square and 

the ring pattern. 

For the image processing and analysis with the aim of defect detection, a search for 

available tools on the internet was done, and there are good approaches for processing 

pipelines, but no ready-to-use tool for UVF image analysis could be found. OpenUVF is 

one of these approaches, which could be developed further, given the required expertise 

in tensorflow and Deep Learning. For (undergraduate) engineering students, coding in 

tensorflow probably means a too high need of expertise, which restricts the target group 

of the tool. As an alternative suggestion, the development of a tool using OpenCV and 

keras was started in this project. 

The developed tool consists of three main steps, each done in one respective script: 

correcting the perspective of the module image, cropping individual cell images and train-

ing and evaluating a CNN on the classification of the cell images. 

The first two scripts use OpenCV, which can be easily installed using “pip install cv2”, or 

“conda install cv2” or similar commands. The third script uses keras and instructions on 

how to install keras and its dependencies are given in the appendix of this work. This 

work aims at allowing everyone to install OpenCV and keras and execute the three 

scripts one after another. This shall serve as a prototype of processing tool for UVF im-

ages and as a basis for further development. 

In the future and given the appropriate image processing tools, comparative studies on 

UVF images from different countries and climates could be done, in order to establish 

UVF as a state-of-the-art inspection method for PV cells. 
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Conclusion 

In the field of optical inspection methods, UVF currently has a niche-position next to the 

well-established Thermography (IR) and Electro- and Photoluminescence (EL and PL). 

Research is being done on the application (setups, image processing) and the provided 

information (cell defect visibility), but the knowledge about the UVF pattern interpretation 

is not yet sufficient to understand all the available information: there are still unexplained 

UVF patterns and the correlations between the causes (climate, module composition, 

age) and the UVF pattern are not yet well-investigated. 

On the long term, comparative studies on UVF patterns regarding different climate 

zones, module compositions and time series of data would be needed to fully understand 

the formation and causes of the UVF patterns.  

This project can be seen as an important contribution to this research, showing UVF 

patterns appearing in Santa Catarina, Brazil. Also, this work focused on developing a 

suitable image processing software, as presented in the summary above. Facing issues 

with available software, a set of four general goals and criteria for (UVF) image pro-

cessing software was set: automatization, efficiency, generalization and usability. Fol-

lowing these goals, the libraries were chosen which have a reputation to be beginner-

friendly and which are taught at universities: OpenCV for image processing and keras 

for Deep Learning techniques. 

The proposed tool can process UVF images once the general parameters of thresholding 

and morphological operations have been adjusted. With these adjustments, a high num-

ber of UVF images can be processed automatically. So, the tool is semi-automatized 

and semi-generalized. Together with this work and the presentation on YouTube12, the 

tool shall be as user-friendly and applicable as possible. 

Due to the development and modification of experimental setups and logistical reasons, 

not enough module images were acquired to mount a large cell image data bank. Due 

to this, the performance metrics of the CNN trained in this project are not representative 

for the potential of the technology. The potential can be estimated by regarding at the 

91,6% correct classification rate which Gilleland et. al. achieved with OpenUVF [1]. Fur-

thermore, the application of Deep Learning methods on Thermography is already state 

of the technology and widely applied for PV inspection. The current project only demon-

strated binary classification, but the program capacity can be extended to classification 

into multiple classes, one for each of the most common encapsulant defects. 

To summarize, this work is a contribution to the development of experimental setups and 

processing tools for UVF images. With further research, development and data collection 

UVF can become a useful complement to Thermography and Electroluminescence as 

optical PV inspection methods. 

 
12 https://www.youtube.com/watch?v=KVd6Grq8Pdg&t=96s 

https://www.youtube.com/watch?v=KVd6Grq8Pdg&t=96s
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7 Appendix I: How to get started with Deep Learning 

7.1 How to install Anaconda, keras and Jupyter in Windows 

Timon Benz, written 06.10.2021, checked 06/2022 

Note: These instructions are an update (adaption) of the article “How to install keras with 

a tensorflow backend for deep learning”, written by Red Huq, published on the blog in-

machineswetrust on 2017-07-28: How to install Keras with a TensorFlow backend for 

deep learning | In Machines We Trust 

https://inmachineswetrust.com/posts/deep-learning-setup/ . 

1.) Download and install Anaconda 

https://www.anaconda.com/products/individual  

download the .exe-file and execute it, you’ll be asked for administrator rights 

 

  

https://inmachineswetrust.com/posts/deep-learning-setup/
https://inmachineswetrust.com/posts/deep-learning-setup/
https://inmachineswetrust.com/posts/deep-learning-setup/
https://www.anaconda.com/products/individual
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- set an easy file-path and note it down, we will need it in the next step 

 

- I personally choose only the second option and the path as PATH environment variable 

in Windows in the next step 

 

2.) Add Anaconda to the Windows PATH environment variables 

Quote from the original blog post: “ 

1. Open the Start menu, start typing "environment" and select the option 

called Edit the system environment variables 

2. Select the Environment Variables button near the bottom 
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3. In the top section containing user variables, select the one called Path and 

choose to edit it 

4. Create a new variable whose name refers to the location of the "Scripts" folder, 

which is inside whichever folder you chose to install Anaconda 

 

“ 

source: https://inmachineswetrust.com/posts/deep-learning-setup/ 

 

 

3.) Set up a virtual environment, install jupyter and keras (and eventually ten-

sorflow) 

Click on the Windows start menu, start typing “Anaconda” and click on “Anaconda 

Prompt (anaconda3)” to open the Anaconda shell. 

 

The Anaconda Navigator can also be used for installing packages (e.g. libraries) within 

virtual environments. Here we are using commands for conda (a package manager) for 

the settings and installations. 

Run the command: 

https://inmachineswetrust.com/posts/deep-learning-setup/
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conda create --name deeplearning python 

In the shell, it looks like this: 

 

After installation commands like this one conda prompt will list available packages and 

ask for confirmation of their installation. Type “y” and press “Enter” to confirm. 

Activate the deep learning environment: 

activate deeplearning 

 

The “(deeplearning)” indicates you are inside the virtual environment. 

Install jupyter, an IDE (intergrated developing environment) that uses iPython notebooks 

– a special coding format allowing formatting and step-by-step execution of your code. 

conda install jupyter 

The above steps of this main step 3.) were in accordance with the instructions of Red 

Huq in his blog post. From here on, I proceed differently because as the packages 

“keras”, “tensorflow”, “jupyter” and also the “python” (language-)package are frequently 

updated, we need to find a combination of compatible versions. 

This is the “critical point” of the installation, if neither my instructions here nor the ones 

of Red Huq, please search for the compatibility of the packages on the internet, for ex-

ample using the search terms: “keras tensorflow python compatibility”. 

The compatibility between these 3 packages is probably most important, and jupyter as 

IDE can probably substituted by other Python-IDEs.  

In the present (10/2021 and 06/2022) compatibility can be achieved by downgrading 

Python to Python 3.6 and using the version Keras 2.3.1 . New Keras versions already 

contain tensorflow, so tensorflow doesn’t need to be installed separately. 

conda install python=3.6 

conda install keras=2.3.1 

(Sidemark: Note: Red Huq`s article says to install “pandas” and “scikit-learn” using 

“conda” and then install keras and tensorflow using the package manager “pip”:  

Original commands – due to compatibility and version changes: DON`T use these: 

conda install pandas 
 
conda install scikit-learn 

pip install tensorflow 
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pip install keras 

Because this didn’t work for me, I recommend to always use conda and not to install 

tensorflow explicitly – it is included in new keras versions.) 

 The shell listed that now (10/2021) tensorflow 2.1.0 is included within keras 2.3.1. 

 

 

The last step – about getting started and opening your first Jupyter notebook from which 

you can use keras – is still the same as in Red Huq`s article: 

4. Verifying the installation 

“A quick way to check if the installation succeeded is to try to import Keras and 
TensorFlow in a Jupyter notebook. Here are two ways to access Jupyter: 

1. Open Command prompt, activate your deep learning environment, and en-
ter jupyter notebook in the prompt 

2. Open Anaconda Navigator (use the Start menu shortcut), switch to your 
deep learning environment in the Applications on drop-down menu, and 
then choose to open Jupyter 

 

The first option is a lot faster. If you missed a step or made a mistake, you can always 
remove the conda environment and start over. 

conda remove --name deeplearning --all 

Otherwise, you should have TensorFlow and Keras ready to go. Go forth and start 
and building! As always, don't hesitate to leave your comments below.“  
 

https://inmachineswetrust.com/images/anaconda_navigator.png
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Source: https://inmachineswetrust.com/posts/deep-learning-setup/ 

I personally use the first method, explicitly: 

1.) Open “Anaconda Prompt (anaconda3)” via the Windows start menu. 
2.) activate deeplearning 
3.) jupyter notebook, this opens jupyter in your browser. Select a folder you 

want to save your notebook in, and press “New” – “Python 3”. 

Good luck with your deep learning projects! 

7.2 How to install PyCharm with an existing Anaconda 

environment in Windows 

As the Anaconda environment was created to develop Deep Learning Codes using 

keras, a user will want to code in his/her preferred IDE (PyCharm, Spyder, …). PyCharm 

is a common choice and recommended, so I personally use PyCharm and describe how 

to code in PyCharm within the existing Anaconda environment. The steps for other IDEs 

might be similar. 

Timon Benz, written 15.10.2021, checked 06/2022 

Note: These instructions are based on the approach of the article/blog post “How to setup 

PyCharm with an anaconda virtual environment already created | by Aseem Bansal | 

towards-infinity | Medium”, written by Aseem Bansal, published on the blog medium on 

2018-03-28. 

1.) Download and install PyCharm Community Edition 

Download PyCharm: Python IDE for Professional Developers by JetBrains 

https://www.jetbrains.com/pycharm/download/#section=windows 

download the .exe-file and execute it, you’ll be asked for administrator rights 

 

Install PyCharm but when you are asked to connect an interpreter, don`t choose to down-

load a Python interpreter, but choose 

Existing interpreter/environment and then the folder path to the python.exe file inside 

the “deeplearning” folder created when setting up the deeplearning virtual environment 

using Anaconda. This is important because Python, keras, Tensorflow etc. must all use 

compatible versions, so also one single Python version compatible to all the libraries and 

packages! 

You might be asked twice: once for a python interpreter – then choose the file path to 

the python.exe file inside the folder of the virtual environment. The second time, you will 

be asked for a virtual environment, there choose existing environment / existing An-

aconda environment and give the file path to the anaconda environment, in our case 

called “deeplearning”, or to the .conda folder. In my case this field was filled automati-

cally, I didn`t change it and it worked. 

https://inmachineswetrust.com/posts/deep-learning-setup/
https://medium.com/infinity-aka-aseem/how-to-setup-pycharm-with-an-anaconda-virtual-environment-already-created-fb927bacbe61
https://medium.com/infinity-aka-aseem/how-to-setup-pycharm-with-an-anaconda-virtual-environment-already-created-fb927bacbe61
https://medium.com/infinity-aka-aseem/how-to-setup-pycharm-with-an-anaconda-virtual-environment-already-created-fb927bacbe61
https://www.jetbrains.com/pycharm/download/#section=windows
https://www.jetbrains.com/pycharm/download/#section=windows
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Next time I install this, I will add screenshots.  

2.) Create a new project, a new python file and test whether keras and tensor-

flow work 

Create a new project or easier: probably there will be an automatically generated 

project with a “main.py”. That file is a test whether the Python Interpreter works (e.g. 

is well connected via file path) so, please execute it. It shouldn`t give any errors, it 

should print the message “Hi PyCharm”. 

Please create a new python file, by right clicking on the project folder -> new -> 

python file and type the following (or similar) commands to see whether keras and 

tensorflow work, too: 

print("Testing Deeplearning libraries") 

 

from keras import layers 

 

The execution of this file should give an output equal/similar to this: 

Testing Deeplearning libraries 

Using TensorFlow backend. 

Process finished with exit code 0 

In that case, the set-up was successful! Congratulations and good luck with your Deep 

Learning projects! 

Timon Benz 

 

7.3 Literature recommendations for Deep Learning  

In order to successfully apply Deep Learning, it is essential to know at least its theoretical 

basics. Therefore, reading at least the first chapters of the following works is highly rec-

ommended. It is recommended to start with the following book, as it provides a stepwise 

and easy-to-read introduction to Neural Networks: 

Grokking Deep Learning 

Source of literature information 

https://www.melbhattan.com/pdf/grokking-deep-learning/
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Author : Andrew Trask 

Publisher : Manning Publications 

Total Pages : 336 

Release : 2019-01-25 

ISBN 10 : 9781617293702 

ISBN 13 : 1617293709 

Language : EN, FR, DE, ES & NL 

 

Having understood the basic structures and the learning algorithm, consult this book for 

explanations of advanced learning techniques: 

 

 François Chollet - Personal Page (fchollet.com) 

access, e.g. via this link: Downloading Deep Learning with Python 1st Edition - libribook 

Deep Learning with Python, written by François Chollet, 2017 

François Chollet developed the keras library for Deep Learning and works for Google, 

his book is very popular in the domain of Deep Learning, many tutorials and Codes that 

you can find online are based on his explanations and Code examples. 

Note: Personally, I use the german version “Deep Learning mit Python und keras”, pub-

lished 2018, mitp. So, in case page numbers, formulations etc. differ, it is due to that. 

There is also a new edition, published in 2021, which is probably even more up to date. 

7.4 Video Presentation of this work and further links 

A presentation of this work is available on the YouTube channel of the fotovoltaica/UFSC 

Solar Energy Research Laboratory, see the respective links: 

Presentation Video of this thesis project on YouTube: 

https://fchollet.com/
https://libribook.com/get1/9424/?bookid=45368
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https://www.youtube.com/watch?v=KVd6Grq8Pdg, Please note that at that state the fi-

nal results of the third script (training the CNN on cell classification) were not yet ob-

tained. However, a general explanation of the third script is included. 

 

YouTube Channel of the fotovoltaica/UFSC laboratory: 

https://www.youtube.com/channel/UCG7j_EffB_2teLxAomPA3fA 

 

Homepage of of the fotovoltaica/UFSC laboratory: 

https://fotovoltaica.ufsc.br/sistemas/fotov/en/ 

https://www.youtube.com/watch?v=KVd6Grq8Pdg
https://www.youtube.com/channel/UCG7j_EffB_2teLxAomPA3fA
https://fotovoltaica.ufsc.br/sistemas/fotov/en/
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8 Appendix II: Codes of the Image Processing Pipeline 

8.1 Code: Module Processing Pipeline (Perspective 

Correction) 
# MODULE PIPELINE 

 

import cv2 

import numpy as np 

import matplotlib.pyplot as plt 

 

def custom_imshow(title, img, perc=0.1): 

   w = img.shape[1]  # original width 

   h = img.shape[0]  # original height 

   # downscaling of the window size & showing the original image 

   WW = int(w * perc) 

   HH = int(h * perc) 

   cv2.namedWindow(title, cv2.WINDOW_NORMAL) 

   cv2.resizeWindow(title, WW, HH) 

   cv2.imshow(title, img) 

   cv2.waitKey(0) 

 

def gammaCorrection(src, gamma): 

   invGamma = 1 / gamma 

   table = [((i / 255) ** invGamma) * 255 for i in range(256)] 

   table = np.array(table, np.uint8) 

   return cv2.LUT(src, table) 

 

 

def equalize_hist_color(img): 

   """Equalize the image splitting the image applying cv2.equalizeHist() 

    to each channel and merging the results, source:'Mastering OpenCV p.199' 

""" 

   channels = cv2.split(img) 

   eq_channels = [] 

   for ch in channels: 

      eq_channels.append(cv2.equalizeHist(ch)) 

      eq_image = cv2.merge(eq_channels) 

   return eq_image 

 

 

def build_kernel(kernel_type, kernel_size): 

   """Creates the specific kernel: MORPH_ELLIPSE, MORPH_CROSS or MORPH_RECT""" 

   if kernel_type == cv2.MORPH_ELLIPSE: 

      # We build a elliptical kernel 

      return cv2.getStructuringElement(cv2.MORPH_ELLIPSE, kernel_size) 

   elif kernel_type == cv2.MORPH_CROSS: 

      # We build a cross-shape kernel 

      return cv2.getStructuringElement(cv2.MORPH_CROSS, kernel_size) 

   else:  # cv2.MORPH_RECT 

      # We build a rectangular kernel: 

      return cv2.getStructuringElement(cv2.MORPH_RECT, kernel_size) 

 

 

def dilate(image, kernel_type, kernel_size): 

   """Dilates the image with the specified kernel type and size""" 

 

   kernel = build_kernel(kernel_type, kernel_size) 

   dilation = cv2.dilate(image, kernel, iterations=1) 

   return dilation 

 

 

def draw_contour_points(img, cnts, color, do_squeeze=True): 

   """Draw all points from a list of contours""" 
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   for cnt in cnts: 

      if do_squeeze == True: 

         cnt = np.squeeze(cnt) 

 

      for i, p in enumerate(cnt): 

         p = p.reshape(1, -1)[0]  # converts array to tuple 

         if len(p) == 2: 

            cv2.circle(img, p, 12, color, -1) 

   return img 

 

 

def draw_contour_outline(img, cnts, color, thickness=1): 

   """Draws contours outlines of each contour""" 

 

   for cnt in cnts: 

      cv2.drawContours(img, [cnt], 0, color, thickness) 

 

 

def get_corner_points(contour): 

   """This function identifies the relative positions of four corner points of 

a contour, 

    it takes tour points and assigns Top_left, top_right, bottom_left, bot-

tom_right to them 

    using the coordinate sum (x+y) as criterion 

   (x+y) is maximal at the bottom right, minimal at the top left""" 

   ### ----------------- get CORNER POINT COORDINATES ---------------------### 

   contour = np.squeeze(contour) 

   # print("squeezed contour = ", contour) 

   pointsums = []  # np.zeros((4,)) 

   for i in range(4): 

      pointsums.append(contour[i][0] + contour[i][1]) 

 

   # extract lower right corner point coordinates 

   lower_right = np.array((2,)) 

   max_ps = max(pointsums) 

   index_lower_right = pointsums.index(max_ps) 

   lower_right = contour[index_lower_right] 

 

   # upper left corner 

   upper_left = np.array((2,)) 

   min_ps = min(pointsums) 

   index_upper_left = pointsums.index(min_ps) 

   upper_left = contour[index_upper_left] 

 

   all_indices = set([0, 1, 2, 3]) 

   identified = set([index_upper_left, index_lower_right]) 

 

   # difference -> remaining points 

   remaining = all_indices.difference(identified)  # set of indices 

   rem = np.array(list(remaining))  # list of indices 

 

   # check location of remaining points 

   point_1 = contour[rem[0]] 

   point_2 = contour[rem[1]] 

 

   if point_1[0] > point_2[0]:  # if x_coordinate of point 1 is greater than x 

of point 2 

      upper_right = point_1  # the first point is more to the right (top 

right) 

      lower_left = point_2 

   else: 

      upper_right = point_2 

      lower_left = point_1 

 

   # (human) CHECK whether corner coordinates are correctly assigned 

   # only for debugging 
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   # check_img = color_image.copy() 

   # check_img = cv2.putText(check_img, 'top left', upper_left, cv2.FONT_HER-

SHEY_SIMPLEX, 7, (0, 0, 255), thickness=10, 

   #                        lineType=8, bottomLeftOrigin=False) 

   # check_img = cv2.putText(check_img, 'top right', upper_right, 

cv2.FONT_HERSHEY_SIMPLEX, 7, (0, 0, 255), thickness=10, 

   #                        lineType=8, bottomLeftOrigin=False) 

   # check_img = cv2.putText(check_img, 'lower left', lower_left, 

cv2.FONT_HERSHEY_SIMPLEX, 7, (0, 0, 255), thickness=10, 

   #                        lineType=8, bottomLeftOrigin=False) 

   # check_img = cv2.putText(check_img, 'lower right', lower_right, 

cv2.FONT_HERSHEY_SIMPLEX, 7, (0, 0, 255), 

   #                        thickness=10, 

   #                        lineType=8, bottomLeftOrigin=False) 

   # check_img = cv2.drawContours(check_img, [contour], -1, (0, 255, 0), 10) 

   # custom_imshow("check", check_img) 

   # cv2.imwrite("coordinates check img.jpg", check_img) 

   return upper_left, upper_right, lower_right, lower_left 

 

 

def distance(pt1, pt2): 

   import math 

   dx = pt1[0] - pt2[0] 

   dy = pt1[1] - pt2[1] 

   t = dx * dx + dy * dy 

   return math.sqrt(t) 

 

 

def get_rectangle_sidelengths(upper_left, upper_right, lower_right, 

lower_left): 

   # get distances 

   dist_x_top = distance(upper_left, upper_right) 

   dist_x_bottom = distance(lower_left, lower_right) 

   dx = (dist_x_bottom + dist_x_top) / 2  # average WIDTH 

 

   dist_y_left = distance(lower_left, upper_left) 

   dist_y_right = distance(lower_right, upper_right) 

   dy = (dist_y_left + dist_y_right) / 2  # average HEIGHT 

   return int(dx), int(dy) 

 

 

 

def detect_contours(img, which='all', eps=0.05, iter=1, draw=False, 

save=False, plots=False): 

   if which == 'all': 

      contours, hierarchy = cv2.findContours(img, cv2.RETR_LIST, 

                                    cv2.CHAIN_APPROX_SIMPLE)  #### retrieve 

ALL METHOD ! 

   elif which == 'external': 

      contours, hierarchy = cv2.findContours(img, cv2.RETR_EXTERNAL, 

                                    cv2.CHAIN_APPROX_SIMPLE)  #### retrieve 

EXTERNAL METHOD ! 

   nr_contours = len(contours) 

   print("detected contours: '{}' ".format(nr_contours)) 

   color_image = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) 

   if draw == True: 

      # Draw the outline of all detected contours: 

      image_contours = color_image.copy()  # copy color image to show the re-

sults (be able to draw colored lines) 

      draw_contour_outline(image_contours, contours, (0, 255, 0), 5) 

      title = img_name + " - " + str(nr_contours) + " contours found in itera-

tion " + str(iter) 

      custom_imshow(title, image_contours) 

   if save == True: 

      cv2.imwrite(title + '.jpg', image_contours) 
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   # CONTOUR APPROXIMATIONS - source: opencv.org tutorial py contour features 

   img_contour_approximations = color_image.copy() 

   cont_approx_lengths = np.zeros(len(contours) + 1) 

   approx = [] 

   for i, cnt in enumerate(contours, 1): 

      epsilon = eps * cv2.arcLength(cnt, True) 

      current_approx = cv2.approxPolyDP(cnt, epsilon, True) 

      if draw == True: 

         cv2.drawContours(img_contour_approximations, [current_approx], 0, (0, 

255, 0), 10) 

         draw_contour_points(img_contour_approximations, current_approx, (255, 

0, 0), do_squeeze=False) 

      cont_approx_lengths[i] = len(current_approx) 

      approx.append(current_approx) 

   if draw == True: 

      title = img_name +" "+str(len(approx)) + " contour approximations epsi-

lon " + str(eps) + " iteration " + str(iter) 

      custom_imshow(title, img_contour_approximations) 

      cv2.imwrite(title + '.jpg', img_contour_approximations) 

 

   # compute average values to be returned as metrics 

   total_nr_contours = nr_contours 

 

   return total_nr_contours, approx 

 

 

 

###################################### 

### OPERATION MODE - SETTINGS 

EPSILON = 0.05 

simple_thresh = 150 

contour_limit = 240 

take_green_channel = True 

G_thresh = 105 

SAVE = True 

SHOW = False 

###################################### 

 

 

### 1.) LOAD ORIGINAL image 
img_name = 'DSC_0650' 

img_original = cv2.imread(img_name + '.JPG') 

custom_imshow(img_name + " original", img_original) 

 

 

### 2.) BRIGHTNESS CORRECTION 
gamma = 2.5  # change the value here to get different result 

img_gamma = gammaCorrection(img_original, gamma=gamma) 

title = img_name + "corrected with gamma = " + str(gamma) 

if SHOW: custom_imshow(title, img_gamma) 

if SAVE: cv2.imwrite(title+'.jpg', img_gamma) 

 

img_gamma_equalized = equalize_hist_color(img_gamma) 

title = img_name + ' gamma correction '+str(gamma)+' and color histogram 

equalization' 

if SHOW: custom_imshow(title, img_gamma_equalized) 

if SAVE: cv2.imwrite(title+'.jpg', img_gamma_equalized) 

 

img = img_gamma_equalized # choose with which image the processing shall con-

tinue 

 

 

### 3.A) Extracting the green colour channel 

B = img[:, :, 0]# splitting into colour channels 

G = img[:, :, 1] 

R = img[:, :, 2] 

# img_without_red = img[:, :, 0] 
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if take_green_channel: 

   custom_imshow('GREEN channel', G) 

   cv2.imwrite(img_name+'_GREEN channel.jpg', G) 

   #custom_imshow('RED channel', R) 

   if SAVE: cv2.imwrite(img_name+'_RED channel.jpg', R) 

   #custom_imshow('BLUE channel', B) 

   if SAVE: cv2.imwrite(img_name+'_BLUE channel.jpg', B) 

   img_name = img_name + "_G" 

   simple_thresh=G_thresh 

   img_gray = G 

 

 

### 3.B) GRASCALE 
if take_green_channel==False: 

   img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) 

else: 

   img_gray = G 

 

 

### 4.) INVERTING 
img = cv2.bitwise_not(img_gray) 

title = img_name + " inverted grayscale after mB and dilate" 

if SHOW: custom_imshow(title, img) 

if SAVE: cv2.imwrite(title+'.jpg', img) 

 

### 5.) SIMPLE THRESHOLDING 
th, img_thresh = cv2.threshold(img, simple_thresh, 255, cv2.THRESH_BINARY) 

title = img_name + " simple thresh "+str(simple_thresh) 

custom_imshow(title, img_thresh) 

if SHOW: custom_imshow(title, img_thresh) 

if SAVE: cv2.imwrite(title + ".jpg", img_thresh) 

 

 

### 6.)  MORPHOLOGICAL OPERATIONS LOOP 
max_iter = 20 

# create the kernel for smoothing images 

kernel_averaging_10_10 = np.ones((10, 10), np.float32) / 100 

kernel_averaging_5_5 = np.ones((5, 5), np.float32) / 25 

kernel_size_3_3 = (3, 3) 

mB_kernel_size = 9 

 

img = img_thresh # choose input image 

for i in range(max_iter): 

   img = dilate(img, cv2.MORPH_CROSS, kernel_size_3_3) 

   img = cv2.medianBlur(img, mB_kernel_size) 

 

   total_nr_contours, contours = detect_contours(img, 

                                         which='external', 

                                         eps=EPSILON, 

                                         iter=i + 1, 

                                         draw=True, 

                                         save=True, 

                                         plots=False) 

   # second ABORTION criterion 

   if total_nr_contours <= contour_limit: 

      print("Less than " + str(contour_limit) + " contours reached, quitting 

morphology loop at iteration " + str( 

         i + 1)) 

      stop_iter = i + 1 

      break 

 

 

### 7.) FILTER CONTOURS BY CRITERIA (to get the module contour) 
 

## 7.A.) ------ 4 CORNER criterion 
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color_image = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) 

color_image_copy = color_image.copy() 

cont_4_corners = [] 

for i, cont in enumerate(contours, 1): 

   nr_corners = len(cont)  ### 4 CORNER criterion 

   if nr_corners == 4: 

      cv2.drawContours(color_image_copy, [cont], -1, (0, 255, 0), 20) 

      draw_contour_points(color_image_copy, [cont], (255, 0, 0)) 

      cont_4_corners.append(cont) 

nr = len(cont_4_corners) 

title = str(nr) + ' contours with 4 corners after ' + str(stop_iter) + ' iter-

ations' 

custom_imshow(title, color_image_copy) 

cv2.imwrite(title + ".jpg", color_image_copy) 

print("number of contours with 4 corners: ", nr) 

 

## 7.B.) ------ ABSOLUTE AREA criterion: 20 to 95 % of image area 

conts_possible_size = [] 

shape = img_original.shape  # get image_size 

image_size = shape[0] * shape[1] 

for cont in cont_4_corners: 

   contour_area = cv2.contourArea(cont)  # contour size (area) 

   if contour_area > image_size * 0.2 and contour_area < image_size * 0.95: 

      conts_possible_size.append(cont) 

print("number of contours between 20 and 95 % of the image area: ", 

len(conts_possible_size)) 

 

## 7.C.) ------ ANGLES criterion -> parallelograms, trapezoids, rhombuses ... 

from math import atan 

import math 

 

def get_angle(p1, p2): 

   dx = p1[0] - p2[0] 

   dy = p1[1] - p2[1] 

   if dx != 0: 

      alpha = atan(dy / dx) 

   else: 

      if dy > 0: 

         alpha = math.pi / 2 

      elif dy < 0: 

         alpha = -math.pi / 2 

      else: 

         print("Error: dx = 0 and dy=0 in arctan(dy/dx) one line has length 

0") 

   return alpha 

 

 

# set angular TOLERANCES 

higher_tolerance_degrees = 80 

t_h = higher_tolerance_degrees * math.pi / 180  # tolerance for higher angular 

difference in rad -> between and pi (polar vectors) 

lower_tolerance_degrees = 60 

t_l = lower_tolerance_degrees * math.pi / 180 

 

conts_accepted_angles = [] 

for cont in conts_possible_size: 

   if len(cont) == 4: 

      upper_left, upper_right, lower_right, lower_left = get_cor-

ner_points(cont) 

      # get the 4 angles of each side with respect to positive x direction 

      alpha_lower = get_angle(lower_right, lower_left) 

      alpha_upper = get_angle(upper_right, upper_left) 

      beta_left = get_angle(lower_right, upper_left) 

      beta_right = get_angle(lower_right, upper_right) 

 

      # get similarity measures for the angles 

      beta_difference = abs((beta_left - beta_right))  # in absolute radians 
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      alpha_difference = abs((alpha_lower - alpha_upper)) 

 

      # rank the measures of similarities - one will (most probably) be larger 

than the other 

      angle_diffs = [alpha_difference, beta_difference] 

      higher_difference = max(angle_diffs) 

      lower_difference = min(angle_diffs) 

 

      # FIRST pair of similar angles 

      if higher_difference > -t_h and higher_difference < t_h: 

         if lower_difference > -t_l and lower_difference < t_l: 

            conts_accepted_angles.append(cont) 

 

print("number of contours with acceptable angles: ", len(conts_accepted_an-

gles)) 

 

parallelograms = conts_accepted_angles 

 

## 7.D.) -------- RELATIVE AREA CRITERION 

sorted_approx = sorted(parallelograms, key=cv2.contourArea, reverse=True)  # - 

SORT contours by area 

if len(sorted_approx) > 1: 

   module_contour = sorted_approx[0]  # extract the LARGEST CONTOUR (by area) 

elif len(sorted_approx) == 1: 

   module_contour = sorted_approx 

else: 

   print("No module contour could be found, try to lower the angular re-

striction, change thresholdig or epsilon.") 

 

 

color_image_copy2 = color_image.copy() 

cv2.drawContours(color_image_copy2, [module_contour[0]], -1, (0, 255, 0), 20) 

draw_contour_points(color_image_copy2, [module_contour[0]], (255, 0, 0)) 

custom_imshow("largest contour with 4 corners", color_image_copy2) 

cv2.imwrite("largest contour with 4 corners.jpg", color_image_copy2) 

 

# SAVE the module contour (!) 

np.save(img_name + "_module_contour.npy", np.asarray(sorted_approx[0])) 

 

 

### 8.) ------ PERSPECTIVE CORRECTION of the MODULE image 
def get_corner_points(contour): 

   ### ----------------- get CORNER POINT COORDINATES ---------------------### 

   contour = np.squeeze(contour) 

   # print("squeezed contour = ", contour) 

   pointsums = []  # np.zeros((4,)) 

   for i in range(4): 

      pointsums.append(contour[i][0] + contour[i][1]) 

 

   # extract lower right corner point coordinates 

   lower_right = np.array((2,)) 

   max_ps = max(pointsums) 

   index_lower_right = pointsums.index(max_ps) 

   lower_right = contour[index_lower_right] 

 

   # upper left corner 

   upper_left = np.array((2,)) 

   min_ps = min(pointsums) 

   index_upper_left = pointsums.index(min_ps) 

   upper_left = contour[index_upper_left] 

 

   all_indices = set([0, 1, 2, 3]) 

   identified = set([index_upper_left, index_lower_right]) 

 

   # difference -> remaining points 

   remaining = all_indices.difference(identified)  # set of indices 

   rem = np.array(list(remaining))  # list of indices 
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   # check location of remaining points 

   point_1 = contour[rem[0]] 

   point_2 = contour[rem[1]] 

 

   if point_1[0] > point_2[0]:  # if x_coordinate of point 1 is greater than x 

of point 2 

      upper_right = point_1  # the first point is more to the right (top 

right) 

      lower_left = point_2 

   else: 

      upper_right = point_2 

      lower_left = point_1 

   return upper_left, upper_right, lower_right, lower_left 

 

 

def distance(pt1, pt2): 

   import math 

   dx = pt1[0] - pt2[0] 

   dy = pt1[1] - pt2[1] 

   t = dx * dx + dy * dy 

   return math.sqrt(t) 

 

 

def get_square_sidelength(upper_left, upper_right, lower_right, lower_left): 

   # get distances 

   dist_x_top = distance(upper_left, upper_right) 

   dist_x_bottom = distance(lower_left, lower_right) 

   dx = (dist_x_bottom + dist_x_top) / 2  # average WIDTH 

 

   dist_y_left = distance(lower_left, upper_left) 

   dist_y_right = distance(lower_right, upper_right) 

   dy = (dist_y_left + dist_y_right) / 2  # average HEIGHT 

 

   dxy = int((dx + dy) / 2)  # average SIDELENGTH (cells are square-shaped) 

   return dxy 

 

 

def get_rectangle_sidelengths(upper_left, upper_right, lower_right, 

lower_left): 

   # get distances 

   dist_x_top = distance(upper_left, upper_right) 

   dist_x_bottom = distance(lower_left, lower_right) 

   dx = (dist_x_bottom + dist_x_top) / 2  # average WIDTH 

 

   dist_y_left = distance(lower_left, upper_left) 

   dist_y_right = distance(lower_right, upper_right) 

   dy = (dist_y_left + dist_y_right) / 2  # average HEIGHT 

   return int(dx), int(dy) 

 

 

## 8.A) ------ get CORNER POINTS 

contour = module_contour  # choose contour 

upper_left, upper_right, lower_right, lower_left = get_corner_points(contour) 

 

## 8.B) ----- get DISTANCES 

dx, dy = get_rectangle_sidelengths(upper_left, upper_right, lower_right, 

lower_left) 

 

## 8.C) ------ PERSPECTIVE TRANSFORM 

input_points = np.float32([[upper_left], [upper_right], [lower_left], 

[lower_right]]) 

target_points = np.float32([[0, 0], [dx, 0], [0, dy], [dx, dy]]) 

 

## 8.D) ------ compute TRANSFORMATION MATRIX, input & target POINTS 

r = 50  # rim width - added to ensure that the whole module, all border cells 

are entirely shown 
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input_points_rim = np.float32([[upper_left[0] - r, upper_left[1] - r], [up-

per_right[0] + r, upper_right[1] - r], 

                        [lower_left[0] - r, lower_left[1] + r], 

[lower_right[0] + r, lower_right[1] + r]]) 

input_points = np.float32([[upper_left], [upper_right], [lower_left], 

[lower_right]]) 

# upper left corner is taken as (0,0) in the new image's coordinate system 

target_points = np.float32([[0, 0], [dx, 0], [0, dy], [dx, dy]]) 

 

## 8.E) ------ PERSPECTIVE TRANSFORM on COLOR image (original) 

img_color_out = img_original.copy() 

size = (dx, dy) 

matrix = cv2.getPerspectiveTransform(input_points_rim, target_points) 

img_color_out = cv2.warpPerspective(img_color_out, matrix, size) 

custom_imshow("original_image", img_original) 

custom_imshow("img_color_out", img_color_out) 

cv2.imwrite(img_name + "_pers_corrected.jpg", img_color_out) 

 

# perspective transform on COLOR image WITH RIM 

img_rim_out = img_original.copy() 

matrix = cv2.getPerspectiveTransform(input_points_rim, target_points) 

size = (dx + 2 * r, dy + 2 * r) 

img_rim_out = cv2.warpPerspective(img_rim_out, matrix, size) 

custom_imshow("img_rim_out", img_rim_out) 

cv2.imwrite(img_name + "_pers_corrected_with_rim.jpg", img_rim_out) 

 

8.2 Code: Cell Cropping Pipeline 
# CELL PIPELINE 

 

### 0.) IMPORTING LIBRARIES and defining functions 
 

import cv2 

import numpy as np 

import matplotlib.pyplot as plt 

 

def custom_imshow(title, img, perc=0.1): 

   w = img.shape[1]  # original width 

   h = img.shape[0]  # original height 

   # downscaling of the window size & showing the original image 

   WW = int(w * perc) 

   HH = int(h * perc) 

   cv2.namedWindow(title, cv2.WINDOW_NORMAL) 

   cv2.resizeWindow(title, WW, HH) 

   cv2.imshow(title, img) 

   cv2.waitKey(0) 

 

 

def gammaCorrection(src, gamma): 

   invGamma = 1 / gamma 

   table = [((i / 255) ** invGamma) * 255 for i in range(256)] 

   table = np.array(table, np.uint8) 

   return cv2.LUT(src, table) 

 

 

def equalize_hist_color(img): 

   """Equalize the image splitting the image applying cv2.equalizeHist() 

    to each channel and merging the results, source:'Master OpenCV p.199' """ 

   channels = cv2.split(img) 

   eq_channels = [] 

   for ch in channels: 

      eq_channels.append(cv2.equalizeHist(ch)) 

      eq_image = cv2.merge(eq_channels) 

   return eq_image 
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def get_rectangle_sidelengths(upper_left, upper_right, lower_right, 

lower_left): 

   # get distances 

   dist_x_top = distance(upper_left, upper_right) 

   dist_x_bottom = distance(lower_left, lower_right) 

   dx = (dist_x_bottom + dist_x_top) / 2  # average WIDTH 

 

   dist_y_left = distance(lower_left, upper_left) 

   dist_y_right = distance(lower_right, upper_right) 

   dy = (dist_y_left + dist_y_right) / 2  # average HEIGHT 

   return int(dx), int(dy) 

 

 

def get_corner_points(contour): 

   ### --- get CORNER POINT COORDINATES  

   contour = np.squeeze(contour) 

   # print("squeezed contour = ", contour) 

   pointsums = []  # np.zeros((4,)) 

   for i in range(4): 

      pointsums.append(contour[i][0] + contour[i][1]) 

 

   # extract lower right corner point coordinates 

   lower_right = np.array((2,)) 

   max_ps = max(pointsums) 

   index_lower_right = pointsums.index(max_ps) 

   lower_right = contour[index_lower_right] 

 

   # upper left corner 

   upper_left = np.array((2,)) 

   min_ps = min(pointsums) 

   index_upper_left = pointsums.index(min_ps) 

   upper_left = contour[index_upper_left] 

 

   all_indices = set([0, 1, 2, 3]) 

   identified = set([index_upper_left, index_lower_right]) 

 

   # difference -> remaining points 

   remaining = all_indices.difference(identified)  # set of indices 

   rem = np.array(list(remaining))  # list of indices 

 

   # check location of remaining points 

   point_1 = contour[rem[0]] 

   point_2 = contour[rem[1]] 

 

   if point_1[0] > point_2[0]:  # if x_coordinate of point 1 is greater than x 

of point 2 

      upper_right = point_1  # the first point is more to the right (top 

right) 

      lower_left = point_2 

   else: 

      upper_right = point_2 

      lower_left = point_1 

 

   # (human) CHECK whether corner coordinates are correctly assigned 

   # only for debugging 

   # check_img = color_image.copy() 

   # check_img = cv2.putText(check_img, 'top left', upper_left, cv2.FONT_HER-

SHEY_SIMPLEX, 7, (0, 0, 255), thickness=10, 

   #                        lineType=8, bottomLeftOrigin=False) 

   # check_img = cv2.putText(check_img, 'top right', upper_right, 

cv2.FONT_HERSHEY_SIMPLEX, 7, (0, 0, 255), thickness=10, 

   #                        lineType=8, bottomLeftOrigin=False) 

   # check_img = cv2.putText(check_img, 'lower left', lower_left, 

cv2.FONT_HERSHEY_SIMPLEX, 7, (0, 0, 255), thickness=10, 

   #                        lineType=8, bottomLeftOrigin=False) 
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   # check_img = cv2.putText(check_img, 'lower right', lower_right, 

cv2.FONT_HERSHEY_SIMPLEX, 7, (0, 0, 255), 

   #                        thickness=10, 

   #                        lineType=8, bottomLeftOrigin=False) 

   # check_img = cv2.drawContours(check_img, [contour], -1, (0, 255, 0), 10) 

   # custom_imshow("check", check_img) 

   # cv2.imwrite("coordinates check img.jpg", check_img) 

   return upper_left, upper_right, lower_right, lower_left 

 

 

def distance(pt1, pt2): 

   import math 

   dx = pt1[0] - pt2[0] 

   dy = pt1[1] - pt2[1] 

   t = dx * dx + dy * dy 

   return math.sqrt(t) 

 

 

def get_square_sidelength(upper_left, upper_right, lower_right, lower_left): 

   # get distances 

   dist_x_top = distance(upper_left, upper_right) 

   dist_x_bottom = distance(lower_left, lower_right) 

   dx = (dist_x_bottom + dist_x_top) / 2  # average WIDTH 

 

   dist_y_left = distance(lower_left, upper_left) 

   dist_y_right = distance(lower_right, upper_right) 

   dy = (dist_y_left + dist_y_right) / 2  # average HEIGHT 

 

   dxy = int((dx + dy) / 2)  # average SIDELENGTH (cells are square-shaped) 

   return dxy 

 

 

def build_kernel(kernel_type, kernel_size): 

   """Creates the specific kernel: MORPH_ELLIPSE, MORPH_CROSS or MORPH_RECT""" 

 

   if kernel_type == cv2.MORPH_ELLIPSE: 

      # We build a elliptical kernel 

      return cv2.getStructuringElement(cv2.MORPH_ELLIPSE, kernel_size) 

   elif kernel_type == cv2.MORPH_CROSS: 

      # We build a cross-shape kernel 

      return cv2.getStructuringElement(cv2.MORPH_CROSS, kernel_size) 

   else:  # cv2.MORPH_RECT 

      # We build a rectangular kernel: 

      return cv2.getStructuringElement(cv2.MORPH_RECT, kernel_size) 

 

 

def dilate(image, kernel_type, kernel_size): 

   """Dilates the image with the specified kernel type and size""" 

 

   kernel = build_kernel(kernel_type, kernel_size) 

   dilation = cv2.dilate(image, kernel, iterations=1) 

   return dilation 

 

 

def draw_contour_points(img, cnts, color, do_squeeze=True): 

   """Draw all points from a list of contours""" 

 

   for cnt in cnts: 

      if do_squeeze == True: 

         cnt = np.squeeze(cnt) 

 

      for i, p in enumerate(cnt): 

         p = p.reshape(1, -1)[0]  # converts array to tuple 

         if len(p) == 2: 

            cv2.circle(img, p, 12, color, -1) 

   return img 
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def draw_contour_outline(img, cnts, color, thickness=1): 

   """Draws contours outlines of each contour""" 

 

   for cnt in cnts: 

      cv2.drawContours(img, [cnt], 0, color, thickness) 

 

 

 

### 1.) GENERAL SETTINGS and LOADING the ORIGINAL image 
## LOAD the ORIGINAL image 

img_name = 'DSC_0650_G_pers_corrected_with_rim' 

img_original = cv2.imread(img_name + '.JPG') 

custom_imshow("original", img_original) 

img_name = "DSC_0650_G" # short name for tiltes, headings and filenames 

 

## GENERAL SETTINGS 

SAVE = True 

import os 

path = img_name + " cropping cells" 

if SAVE: 

   try: 

      os.mkdir(path) 

   except: 

      print("folder for cropping cell images already exists, program contin-

ues") 

path = path + "/" 

take_green_channel = False 

G_thresh = 105 

 

### 2.) BRIGHTNESS CORRECTION 
gamma = 2.5  # change the value here to get different result 

img_gamma = gammaCorrection(img_original, gamma=gamma) 

custom_imshow("corrected with gamma =" + str(gamma), img_gamma) 

if SAVE: cv2.imwrite(path + img_name + ' gamma correction 2_5.jpg', img_gamma) 

 

img_gamma2_5_equalized = equalize_hist_color(img_gamma) 

custom_imshow('gamma=2.5 and color histogram equalization', 

img_gamma2_5_equalized) 

if SAVE: cv2.imwrite(path + img_name + ' gamma correction 2_5 and color hist 

equalized.jpg', img_gamma2_5_equalized) 

 

# CHOOSE 

img = img_gamma2_5_equalized 

 

 

### 3.) GREEN COLOUR CHANNEL or  GRASCALING 
 

### 3.A) Extracting the GREEN COLOUR CHANNEL 

B = img[:, :, 0]  # splitting into colour channels 

G = img[:, :, 1] 

R = img[:, :, 2] 

# img_without_red = img[:, :, 0] 

 

if take_green_channel: 

   custom_imshow('GREEN channel', G) 

   cv2.imwrite(img_name + '_GREEN channel.jpg', G) 

   # custom_imshow('RED channel', R) 

   if SAVE: cv2.imwrite(img_name + '_RED channel.jpg', R) 

   # custom_imshow('BLUE channel', B) 

   if SAVE: cv2.imwrite(img_name + '_BLUE channel.jpg', B) 

   img_name = img_name + "_G" 

   simple_thresh = G_thresh 

   img_gray = G 

 

### 3.B) GRAYSCALING (alternative to 3.A) 

img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) 
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custom_imshow("grayscale after mB and dilate", img_gray) 

if SAVE: cv2.imwrite(path + img_name + " grayscale after mB and dilate.jpg", 

img_gray) 

 

### 4.) INVERTING 
img = cv2.bitwise_not(img_gray) 

custom_imshow("inverted grayscale after mB and dilate", img) 

if SAVE: cv2.imwrite(path + img_name + " inverted grayscale after mB and di-

late.jpg", img) 

 

### 5.) SIMPLE THRESHOLDING 
th, img_thresh_150 = cv2.threshold(img, 150, 255, cv2.THRESH_BINARY) 

custom_imshow("img_thresh_150", img_thresh_150) 

if SAVE: cv2.imwrite(path + img_name + " img_thresh_150.jpg", img_thresh_150) 

 

# CHOOSE 

img = img_thresh_150 

 

### 6.)  CONTOUR DETECTION AND MORPHOLOGICAL OPERATIONS 
kernel_averaging_10_10 = np.ones((10, 10), np.float32) / 100 

kernel_averaging_5_5 = np.ones((5, 5), np.float32) / 25 

kernel_size_3_3 = (3, 3) 

kernel_size_5_5 = (5, 5) 

 

 

def detect_contours(img, which='all', eps=0.05, iter=1, draw=False, 

save=False, plots=False): 

   if which == 'all': 

      contours, hierarchy = cv2.findContours(img, cv2.RETR_LIST, 

                                    cv2.CHAIN_APPROX_SIMPLE)  #### retrieve 

ALL METHOD ! 

   elif which == 'external': 

      contours, hierarchy = cv2.findContours(img, cv2.RETR_EXTERNAL, 

                                    cv2.CHAIN_APPROX_SIMPLE)  #### retrieve 

EXTERNAL METHOD ! 

   nr_contours = len(contours) 

   print("detected contours: '{}' ".format(nr_contours)) 

   color_image = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) 

   if draw == True: 

      # Draw the outline of all detected contours: 

      image_contours = color_image.copy()  # copy color image to show the re-

sults (be able to draw colored lines) 

      draw_contour_outline(image_contours, contours, (0, 255, 0), 5) 

      title = str(nr_contours) + " contours found in iteration " + str(iter) 

      custom_imshow(title, image_contours) 

      if SAVE: cv2.imwrite(path + img_name + " " + title + '.jpg', image_con-

tours) 

 

   ### SORT & FILTER CONTOURS ### 

   # SORT contours by AREA 

   sorted_contours = sorted(contours, key=cv2.contourArea, reverse=True) 

 

   # get contour lengths, areas and perimeters 

   cont_lengths = np.zeros((len(contours) + 1,)) 

   cont_areas = np.zeros((len(contours) + 1,)) 

   cont_perimeters = np.zeros((len(contours) + 1,)) 

   for i, cont in enumerate(sorted_contours, 1): 

      cont_lengths[i] = len(cont) 

      cont_areas[i] = cv2.contourArea(cont) 

      cont_perimeters[i] = cv2.arcLength(cont, True) 

 

   if plots: 

      # PLOT contour lengths vs. contour area 

      plt.plot(cont_lengths) 

      plt.ylabel('contour length') 

      plt.xlabel('contour (by descending area)') 

      title = "Contour lengths vs. area at iteration " + str(iter) 
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      plt.title(title) 

      plt.show() 

 

   # CONTOUR APPROXIMATIONS - idea:Amanda, Aline, source: opencv.org tutorial 

py contour features 

   img_contour_approximations = color_image.copy() 

   cont_approx_lengths = np.zeros(len(contours) + 1) 

   approx = [] 

   for i, cnt in enumerate(contours, 1): 

      epsilon = eps * cv2.arcLength(cnt, True) 

      current_approx = cv2.approxPolyDP(cnt, epsilon, True) 

      if draw == True: 

         cv2.drawContours(img_contour_approximations, [current_approx], 0, (0, 

255, 0), 10) 

         draw_contour_points(img_contour_approximations, current_approx, (255, 

0, 0), do_squeeze=False) 

      cont_approx_lengths[i] = len(current_approx) 

      approx.append(current_approx) 

   if draw == True: 

      title = str(len(approx)) + " contour approximations epsilon " + str(eps) 

+ " iteration " + str(iter) 

      custom_imshow(title, img_contour_approximations) 

      if SAVE: cv2.imwrite(path + img_name + " " + title + '.jpg', img_con-

tour_approximations) 

 

   if plots == True: 

      # PLOT contour lengths vs. contour area - APPROXIMATED contours 

      sorted_approx = sorted(approx, key=cv2.contourArea, reverse=True) 

      plt.plot(cont_approx_lengths) 

      plt.ylabel('approximated contour length') 

      plt.xlabel('contour (by descending area)') 

      title = "Lengths of approximated contours vs. contour area epsilon " + 

str(eps) + " iteration " + str(iter) 

      plt.title(title) 

      plt.show() 

 

   # compute average values to be returned as metrics 

   # total number of contours 

   total_nr_contours = nr_contours 

   nr_approx_contours = len(approx) 

 

   # nr_corners_per_contour (for approximated contours) 

   corners_per_contour = sum(cont_approx_lengths) / len(approx) 

 

   return total_nr_contours, nr_approx_contours, corners_per_contour, approx 

 

 

max_iter = 20 

 

# initialize history arrays 

hist_total_nr_contours = np.zeros((max_iter)) 

hist_nr_approx_contours = np.zeros((max_iter,)) 

hist_corners_per_contour = np.zeros((max_iter,)) 

 

hist_nr_of_cells = np.zeros((max_iter,)) 

hist_nr_4_cornered_contours = np.zeros((max_iter,)) 

hist_nr_parallelograms = np.zeros((max_iter,)) 

 

mB_kernel_size = 9 

kernel_size = kernel_size_3_3 

for i in range(max_iter): 

   if i > 0: 

      img = dilated_33_sp 

 

   dilated_33 = dilate(img, cv2.MORPH_CROSS, kernel_size) 

 

   dilated_33_sp = cv2.medianBlur(dilated_33, mB_kernel_size) 
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   detecting = True  # if true: do morphology and contours detection alongside 

-> recommended to observe the decrese of contours 

   if detecting == True: 

      if i == 0:  # draw plots and show images at the FIRST iteration 

         total_nr_contours, nr_approx_contours, corners_per_contour, contours 

= detect_contours(dilated_33_sp, 

                                                                           

which='external', 

                                                                           

iter=i + 1, 

                                                                           

draw=True, 

                                                                           

save=True, 

                                                                           

plots=False) 

      elif i == (max_iter - 1): 

         total_nr_contours, nr_approx_contours, corners_per_contour, contours 

= detect_contours(dilated_33_sp, 

                                                                           

which='external', 

                                                                           

iter=i + 1, 

                                                                           

draw=True, 

                                                                           

save=False, 

                                                                           

plots=False) 

      else:  # draw plots and show images at the LAST iteration 

         total_nr_contours, nr_approx_contours, corners_per_contour, contours 

= detect_contours(dilated_33_sp, 

                                                                           

which='external', 

                                                                           

iter=i + 1, 

                                                                           

draw=False, 

                                                                           

save=False, 

                                                                           

plots=False) 

 

      # create arrays of the metrics 

      hist_total_nr_contours[i] = total_nr_contours 

      hist_nr_approx_contours[i] = nr_approx_contours 

      hist_corners_per_contour[i] = corners_per_contour 

 

      # ABORTION CRITERION = include  CELL CONTOUR CRITERIA ???: 

 

      ### 6.) FILTERING CELL CONTOURS (get true cell contours only) 
      if nr_approx_contours <= 250: 

 

         ## 6.A.) Check CELL contour criteria 

         # ------ 4 CORNER criterion 

         cont_4_corners = [] 

         for cont in contours:  ### 4 CORNER criterion 

            if len(cont) == 4: 

               cont_4_corners.append(cont) 

         nr_4_cornered_contours = len(cont_4_corners) 

         hist_nr_4_cornered_contours[i] = nr_4_cornered_contours 

 

         ## 6.B.) ------ SIDELENGTH criterion 

         parallelograms = [] 

         for cont in cont_4_corners: 
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            upper_left, upper_right, lower_right, lower_left = get_cor-

ner_points(cont) 

            dx, dy = get_rectangle_sidelengths(upper_left, upper_right, 

lower_right, lower_left)  # get distances 

            t = 0.4  # tolerance - relative difference permitted between 

height and width -> 'rectangularity' 

            if dx > dy * (1 - t) and dx < dy * (1 + t): 

               parallelograms.append(cont) 

         nr_parallelograms = len(parallelograms) 

         hist_nr_parallelograms[i] = nr_parallelograms 

 

         ## 6.C.) ------ AREA criterion 

         cells = [] 

         # get image_size = module_size, and compute cell size 

         shape = img_original.shape 

         module_size = shape[0] * shape[1] 

         nr_cells_per_module = 60 

         cell_area = int(module_size / nr_cells_per_module) 

         t_a = 0.4  # cell area tolerance 

         for cont in parallelograms: 

            contour_area = cv2.contourArea(cont) 

            if contour_area > cell_area * (1 - t_a) and contour_area < 

cell_area * (1 + t_a): 

               prev_cell_contours = cells 

               cells.append(cont) 

         nr_cells = len(cells) 

         hist_nr_of_cells[i] = nr_cells 

 

         # COMBINATION of criteria => CELL CRITERION 

         # when the number of detected cell contours stagnates, stop morpho-

logical loop 

         # t_c = 0.05 

         stop_iter = 0 

         if i >= 1: 

            if nr_cells < hist_nr_of_cells[i - 1]:  # only select, don't de-

stroy contours 

               stop_iter = i  # also saved for title strings of plots/images 

               cells = prev_cell_contours 

               print("Quitting morphology loop at iteration " + 

str(stop_iter)) 

               print("because the iteration " + str(stop_iter + 1) + " de-

stroyed cell contours.") 

               break 

         color_image = cv2.cvtColor(dilated_33_sp, cv2.COLOR_GRAY2RGB) 

         color_image_copy = color_image.copy() 

         for j, cont in enumerate(cells, 1): 

            cv2.drawContours(color_image_copy, [cont], -1, (0, 255, 0), 20) 

            draw_contour_points(color_image_copy, [cont], (255, 0, 0)) 

         nr = len(cells) 

         title = str(nr) + ' contours fulfilling the contour criteria after ' 

+ str(stop_iter) + ' iterations' 

         custom_imshow(title, color_image_copy) 

         if SAVE: cv2.imwrite(path + img_name + " " + title + ".jpg", 

color_image_copy) 

 

plot_hist = False 

if plot_hist == True: 

   ### plot HISTORY ### 

   plt.plot(hist_total_nr_contours) 

   plt.ylabel('total nr of contours') 

   plt.xlabel('iterations of morphological operation(s)') 

   plt.title('History of average contour lengths vs. morphological ops itera-

tions') 

   plt.show() 

 

   plt.plot(hist_nr_approx_contours) 

   plt.ylabel('total nr of APPROXIMATED contours') 
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   plt.xlabel('iterations of morphological operation(s)') 

   plt.title('History of average APPROX-contour lengths vs. morphological ops 

iterations') 

   plt.show() 

 

   plt.plot(hist_corners_per_contour) 

   plt.ylabel('average nr of corners per contour') 

   plt.xlabel('iterations of morphological operation(s)') 

   plt.title('History of average nr of corners per contour vs. morphological 

ops iterations') 

   plt.show() 

 

   plt.plot(hist_nr_4_cornered_contours) 

   plt.ylabel('nr_4_cornered_contours') 

   plt.xlabel('iterations of morphological operation(s)') 

   plt.title('hist_nr_4_cornered_contours vs. morphological ops iterations') 

   plt.show() 

 

   plt.plot(hist_nr_parallelograms) 

   plt.ylabel('hist_nr_parallelograms') 

   plt.xlabel('iterations of morphological operation(s)') 

   plt.title('hist_nr_parallelograms vs. morphological ops iterations') 

   plt.show() 

 

   plt.plot(hist_nr_of_cells) 

   plt.ylabel('hist_nr_of_cells') 

   plt.xlabel('iterations of morphological operation(s)') 

   plt.title('hist_nr_of_cells vs. morphological ops iterations') 

   plt.show() 

 

### 8.) CROPPING EACH CELL by perspective transformation func-

tions 
# 

# CREATE FOLDERS to SAVE CELL IMAGES 

saving_cell_imgs = True 

if saving_cell_imgs: 

   import os 

 

   color_folder_path = img_name + " color cell images" 

   try: 

      os.mkdir(color_folder_path) 

   except: 

      print("folder for color cell images already exists, program continues") 

 

   binary_folder_path = img_name + " binary cell images" 

   try: 

      os.mkdir(binary_folder_path) 

   except: 

      print("folder for binary cell images already exists, program continues") 

 

# CROP CELL IMAGES one by one using the perspective correction functions 

for cell_index, contour in enumerate(cells): 

   ## --- get CORNER POINTS 

   upper_left, upper_right, lower_right, lower_left = get_corner_points(con-

tour) 

 

   ## --- get DISTANCES 

   dx, dy = get_rectangle_sidelengths(upper_left, upper_right, lower_right, 

lower_left) 

   # transform the (slight) rectangle into a square -> slight rectangularity 

due to imperfect module image sizing -> relation 6/10 cells height/width 

   dxy = int((dx + dy) / 2) 

 

   ## --- PERSPECTIVE TRANSFORM 

   # upper left corner is taken as (0,0) in the new image's coordinate system 

   input_points = np.float32([[upper_left], [upper_right], [lower_left], 

[lower_right]]) 
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   target_points = np.float32([[0, 0], [dxy, 0], [0, dxy], [dxy, dxy]]) 

 

   ## --- perspective transform on BINARY image 

   img_bin_module = img_thresh_150.copy() 

   matrix = cv2.getPerspectiveTransform(input_points, target_points) 

   img_bin_out = cv2.warpPerspective(img_bin_module, matrix, (dxy, dxy)) 

   title = img_name + " binary cell " + str(cell_index) 

   custom_imshow(title, img_bin_out) 

   if saving_cell_imgs: cv2.imwrite(binary_folder_path + "/" + title + '.jpg', 

img_bin_out) 

 

   ## --- perspective transform on COLOR image (original) 

   img_color = img_original.copy() 

   img_color_out = cv2.warpPerspective(img_color, matrix, (dxy, dxy)) 

   title = img_name + " color cell " + str(cell_index) 

   custom_imshow(title, img_color_out) 

   if saving_cell_imgs: cv2.imwrite(color_folder_path + "/" + title + '.jpg', 

img_color_out) 

 

8.3 Code: Training a CNN on cell image classification 

The code is based on code examples for image classification in [8]. 

 

import os 

################### global variables ############################ 
images_per_class = 35 

classes_list = ["intact", "defect"] 

main_dir = "C:/Users/timon/Documents/UVF_cells_classification" 

original_dir = os.path.join(main_dir, 'original') 

images_per_batch = 2 

################################################################ 

 

### STEP 1: Splitting the cropped images into train, validation 

and test data 
# import libraries and create access to the original data folder 

import os, shutil 

 

original_directories = [] 

for classname in classes_list: 

   original_directories.append(os.path.join(original_dir, classname))  # list 

the paths of source directories 

 

# create base directories for training, validation and test images 

train_dir = os.path.join(main_dir, 'train') 

validation_dir = os.path.join(main_dir, 'validation') 

test_dir = os.path.join(main_dir, 'test') 

os.mkdir(train_dir) 

os.mkdir(validation_dir) 

os.mkdir(test_dir) 

 

# create a dictionary assigning class names to class indices: 

classes_dict = {} 

i = 0 

for word in classes_list: 

   classes_dict[word] = i 

   i = i + 1 

 

# create one directory for each class and dataset (train, test, validate) 

train_directories = [' '] * len(classes_list) # initialization 

validation_directories = [' '] * len(classes_list) 

test_directories = [' '] * len(classes_list) 

i = 0 



Appendix II: Codes of the Image Processing Pipeline UVF Imagery of PV cells (Timon Benz) 

94 

 

 

# create directories to classes within train, val, test folders 

for classname in classes_list: 

   train_directories[i] = os.path.join(train_dir, classes_list[i])  # - TRAIN-

ING images 

   os.mkdir(train_directories[i]) 

   validation_directories[i] = os.path.join(validation_dir, classes_list[i])  

# - VALIDATION images 

   os.mkdir(validation_directories[i]) 

   test_directories[i] = os.path.join(test_dir, classes_list[i])  # TESTING 

images 

   os.mkdir(test_directories[i]) 

   i = i + 1 

 

# copy images to their destination folder 

for classname in classes_list: 

   # copy 60 % of the images to the TRAIN directories 

   percentage_training = 0.65 

   max_train = int(percentage_training * images_per_class) + 1 

   fnames = [classname+" ({}).jpg".format(i) for i in range(1, max_train)] 

 

   for fname in fnames: 

      src = os.path.join(original_directories[classes_dict[classname]], fname)  

# source path 

      dst = os.path.join(train_directories[classes_dict[classname]], fname)  # 

destination path 

      shutil.copyfile(src, dst)  # copy 

 

   # copy 20 % of the images to the VALIDATION directories 

   max_val = int(0.85 * images_per_class) + 1 

   fnames = [classname+" ({}).jpg".format(i) for i in range(max_train, 

max_val)] 

 

   for fname in fnames: 

      src = os.path.join(original_directories[classes_dict[classname]], fname)  

# source path 

      dst = os.path.join(validation_directories[classes_dict[classname]], 

fname)  # destination path 

      shutil.copyfile(src, dst)  # copy 

 

   # copy 15% to the TEST directories 

   fnames = [classname+" ({}).jpg".format(i) for i in range(max_val, im-

ages_per_class)] 

 

   for fname in fnames: 

      src = os.path.join(original_directories[classes_dict[classname]], fname)  

# source path 

      dst = os.path.join(test_directories[classes_dict[classname]], fname)  # 

destination path 

      shutil.copyfile(src, dst)  # copy 

 

   print("Images of " + classname + " successfully preprocessed.") 

 

# testing whether all images are imported correctly 

print("TRAINING") 

for classname in classes_list: 

   print("Number of image in folder <" + classname + "> = ", 

len(os.listdir(train_directories[classes_dict[classname]]))) 

print("VALIDATION") 

for classname in classes_list: 

   print("Number of image in folder <" + classname + "> = ", 

len(os.listdir(validation_directories[classes_dict[classname]]))) 

print("TESTING") 

for classname in classes_list: 

   print("Number of image in folder <" + classname + "> = ", 

len(os.listdir(test_directories[classes_dict[classname]]))) 
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### STEP 2: create Image Data Generators 
# creating image data generators that apply data augmentation 

from keras.preprocessing.image import ImageDataGenerator 

 

train_datagen = ImageDataGenerator(rescale=1. / 255, 

                           rotation_range=40,  # data generator with 

                           width_shift_range=0.2, 

                           height_shift_range=0.2,  # data augmentation 

                           shear_range=0.2, 

                           zoom_range=0.2, 

                           horizontal_flip=False, 

                           ) 

train_generator = train_datagen.flow_from_directory(train_dir,  # configure 

the train generator 

                                       target_size=(150, 150), 

                                       batch_size=images_per_batch, 

                                       class_mode='categorical') 

validation_datagen = ImageDataGenerator(rescale=1. / 255)  # simple data gen-

erator 

validation_generator = validation_datagen.flow_from_directory(validation_dir,  

# configuring 

                                               target_size=(150, 150), 

                                               batch_size=images_per_batch, 

                                               class_mode='categorical') 

test_datagen = ImageDataGenerator(rescale=1. / 255, 

                          dtype="float32")  # simple data generator 

test_generator = test_datagen.flow_from_directory(test_dir,  # configuring 

                                      target_size=(150, 150), 

                                      batch_size=1, 

                                      class_mode='categorical' 

                                      ) 

print("Data generators successfully created.") 

 

 

### STEP 3: Load & modify a pretrained neural network 
from keras.applications import VGG16 

from keras import optimizers 

from keras import models 

from keras import layers 

import os 

 

conv_base = VGG16(weights='imagenet',  # Initializing/loading pretrained 

weights 

              include_top=False,  # whether the classifier is to be included 

              input_shape=(150, 150, 3))  # shape of the input image tensor 

 

model = models.Sequential() 

model.add(conv_base) 

model.add(layers.Flatten()) 

model.add(layers.Dense(256, activation='relu')) 

model.add(layers.Dense(256, activation='relu')) 

model.add(layers.Dense(128, activation='relu')) 

model.add(layers.Dense(len(classes_list), activation='softmax')) 

 

# freeze the convolutional base # optionally, not recommended here 

#print("Number of weights before freezing weights: ", len(model.traina-

ble_weights)) 

#conv_base.trainable = False 

#print("Number of trainable weights after freezing weights: ", 

len(model.trainable_weights)) 

 

 

### STEP 4.) TRAIN and SAVE the CNN model 
model.compile(loss='categorical_crossentropy', 

           optimizer=optimizers.RMSprop(lr=1e-5), 

           metrics=['acc']) 
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history = model.fit_generator(train_generator, 

                       steps_per_epoch=int(max_train/images_per_batch), 

                       epochs=10, 

                       validation_data=validation_generator, 

                       validation_steps=int(max_val-max_train)/im-

ages_per_batch) 

 

### save the model 

model.save('cell_image_classification_model.h5') 

 

 

### STEP 5.)  Evaluate the training progress 
# use the pyplot library to draw diagrams of the training progress and test 

results 

import matplotlib.pyplot as plt 

 

acc = history.history['acc'] 

val_acc = history.history['val_loss'] 

loss = history.history['loss'] 

val_loss = history.history['val_loss'] 

epochs = range(1, len(acc) + 1) 

plt.plot(epochs, acc, 'bo', label='training') 

plt.plot(epochs, val_acc, 'r', label='validation') 

plt.title('Correct classification rate training/validation') 

plt.legend() 

plt.xlabel('epochs') 

plt.ylabel('correct classification rate') 

plt.figure() 

plt.plot(epochs, loss, 'bo', label='loss training') 

plt.plot(epochs, val_loss, 'r', label='loss validation') 

plt.title('Loss function value training/validation') 

plt.legend() 

plt.xlabel('epochs') 

plt.ylabel('loss function value') 

plt.show() 

 

### STEP 6: Evaluate the model on test data 
test_datagen = ImageDataGenerator(rescale=1. / 255) 

test_generator = test_datagen.flow_from_directory(test_dir, 

                                      target_size=(150, 150), 

                                      batch_size=10, 

                                      class_mode='categorical') 

test_loss, test_acc = model.evaluate_generator(test_generator, steps=int(im-

ages_per_class-max_val)) 

print('Correct classification rate on test data:', test_acc) 

 

The code should yield an ouput similar to the following, as well as the graphs shown in 

Figure 42. 

Images of intact successfully preprocessed. 

Images of defect successfully preprocessed. 

TRAINING 

Number of image in folder <intact> =  22 

Number of image in folder <defect> =  22 

VALIDATION 

Number of image in folder <intact> =  7 

Number of image in folder <defect> =  7 

TESTING 

Number of image in folder <intact> =  5 

Number of image in folder <defect> =  5 

[…] 

Found 44 images belonging to 2 classes. 
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Found 14 images belonging to 2 classes. 

Found 10 images belonging to 2 classes. 

Data generators successfully created. 

Epoch 1/10 

11/11 [==============================] - 6s 457ms/step - loss: 0.7319 - acc: 0.5000 - 

val_loss: 0.7654 - val_acc: 0.3750 

Epoch 2/10 

11/11 [==============================] - 5s 438ms/step - loss: 0.6917 - acc: 0.5909 - 

val_loss: 0.6396 - val_acc: 0.5000 

Epoch 3/10 

11/11 [==============================] - 5s 440ms/step - loss: 0.6420 - acc: 0.6364 - 

val_loss: 0.7616 - val_acc: 0.2500 

Epoch 4/10 

11/11 [==============================] - 5s 473ms/step - loss: 0.6928 - acc: 0.4545 - 

val_loss: 0.5259 - val_acc: 0.6250 

Epoch 5/10 

11/11 [==============================] - 5s 490ms/step - loss: 0.5525 - acc: 0.8182 - 

val_loss: 0.8203 - val_acc: 0.3750 

Epoch 6/10 

11/11 [==============================] - 5s 474ms/step - loss: 0.5767 - acc: 0.6364 - 

val_loss: 0.5103 - val_acc: 0.8750 

Epoch 7/10 

11/11 [==============================] - 5s 474ms/step - loss: 0.5659 - acc: 0.7273 - 

val_loss: 0.3665 - val_acc: 0.8750 

Epoch 8/10 

11/11 [==============================] - 5s 470ms/step - loss: 0.5534 - acc: 0.7273 - 

val_loss: 0.3211 - val_acc: 0.8750 

Epoch 9/10 

11/11 [==============================] - 5s 470ms/step - loss: 0.5768 - acc: 0.6364 - 

val_loss: 0.2533 - val_acc: 1.0000 

Epoch 10/10 

11/11 [==============================] - 5s 468ms/step - loss: 0.3831 - acc: 0.9545 - 

val_loss: 0.2822 - val_acc: 0.8750 

Found 10 images belonging to 2 classes. 

Correct classification rate on test data: 0.699999988079071 
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