Volltext-Downloads (blau) und Frontdoor-Views (grau)

Signalanalyse und -auswertung der Messdaten eines induktiven Niederschlagsensors

  • Die folgende Bachelorarbeit analysiert und wertet die Messdaten eines Niederschlagsensors aus, der auf dem induktiven Wirbelstromprinzip aufbaut. Der Sensor wird an der Hochschule Ruhr West im Institut für Mess- und Sensortechnik entwickelt. Er soll nach erfolgreicher Konfiguration die Niederschlagsintensität und die Tropfengröße über die Resonanzfrequenz der Spule ausgeben können. Um dieses Ziel zu erreichen, gibt die Bachelorarbeit eine Einschätzung, inwieweit das System für eine Niederschlagserfassung geeignet ist und welche Verbesserungen vorgenommen werden können. Dazu wurden die Messdaten in einer Regenkammer der Firma Lambrecht meteo GmbH erfasst. Für die Versuche wurden zwei Flachspulen mit Resonanzfrequenzen von 1,7 MHz und 8 MHz nacheinander ausgewertet. Die resultierenden Messdaten werden sowohl im Zeit- als auch im Frequenzbereich auf Verhaltensmuster und Kennwerte untersucht. Aus den Ergebnissen geht hervor, dass der Sensor aufgrund von äußeren Einflüssen und inneren Verhaltensweisen keine signifikante Antwort auf den Niederschlag ausgibt, um die Niederschlagsintensität und die Tropfengröße zu ermitteln. Dennoch zeigt sich, dass die Resonanzfrequenz der Spulen gegensätzliche Reaktionen hervorruft. Die Spule mit der Resonanzfrequenz von 1,7 MHz reagiert deutlich unempfindlicher auf äußere Einflüsse wie parasitäre Kapazitäten. Allerdings werden nur Regentropfeneinschläge bei hohen Niederschlagsmengen deutlich erkannt. Die Spule mit der Resonanzfrequenz von 8 MHz hingegen zeigt ein empfindlicheres Verhalten auf äußere Einflüsse. Zur Optimierung des Niederschlagssensors, muss dieser konfiguriert werden, damit er äußeren Einflüssen robust entgegenwirkt und den Niederschlag sensibel genug detektiert. Zudem müssen Ausreißer, die in der Frequenzanalyse entdeckt wurden und von den inneren Verhaltensweisen stammen, entfernt werden.

Download full text files

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author:Alexander Bödder
URN:urn:nbn:de:hbz:1393-opus4-7462
Document Type:Bachelor Thesis
Language:German
Year of Completion:2022
Release Date:2022/06/02
Institutes:Fachbereich 4 - Institut Mess- und Senstortechnik
DDC class:600 Technik, Medizin, angewandte Wissenschaften / 621.3 Elektrotechnik, Elektronik
Licence (German):License LogoNo Creative Commons