600 Technik
Refine
Year of publication
Document Type
- Conference Proceeding (27)
- Article (8)
- Bachelor Thesis (5)
- Doctoral Thesis (2)
- Book (1)
- Part of a Book (1)
- Master's Thesis (1)
- Part of Periodical (1)
Language
- German (26)
- English (19)
- Multiple languages (1)
Is part of the Bibliography
- no (46)
Keywords
Im Rahmen dieser Bachelorarbeit werden Dehnungsmessstreifen (DMS)
mittels Faktor kalibriert, da die DMS unterschiedlich positioniert sind. Auf
Grund der manuellen Applikation stellen die DMS unterschiedliche Dehnungen
dar, dies soll mit Hilfe einer Kalibrierung der DMS verhindert werden. Damit
die DMS kalibriert werden können, werden die DMS in einer Viertelbrücke
gemessen und anschließend mit Hilfe einer Messkarte in Matlab eingelesen.
Im Matlab werden die Daten anschließend weiterverarbeitet, so dass jeder
DMS seinen eigenen Faktor bekommt. Anschließend werden die DMS in eine
Vollbrücke und Zweiviertelbrücke verrechnet, damit die reine Biegedehnung
sowie reine Zugdehnung berechnet werden kann.
Ziel dieser Arbeit ist es, ein grundlegendes Verständnis eines elektrisch betriebenen Lenksystems zu schaffen und dessen zugehörige Anforderungen und Analysen seitens der funktionalen Sicherheit darzustellen. Beginnend mit der theoretischen Darstellung des Lenksystems und den Normen wird im praktischen Teil der Arbeit diese Theorie angewandt. Zudem werden Autonomiestufen und deren rechtliche Grundlage in Deutschland aufgeführt und diskutiert.
Hierbei wird auf die Norm für die funktionale Sicherheit, die ISO 26262 und auf die Norm für die Sicherheit der Funktion, die ISO 21448 eingegangen. Es wird erläutert, welchen Zweck die Anwendung der ISO 26262 hat und wie sie aufgrund der zunehmenden Komplexität in der Automobilbranche durch die ISO 21448 (SOTIF) ergänzt wird. Dazu wird herausgearbeitet, wann die ISO 26262 an ihre Grenzen stößt und wie unabdingbar die Anwendung von SOTIF wird.
Einhergehend mit der technologischen Entwicklung und der zunehmenden Komplexität treten nämlich vermehrt Aspekte auf, die mit der ISO 26262 allein nicht abgedeckt werden können. Sicherheitsaspekte nehmen zu und verändern sich mit neuen Komfort- und Assistenzsystemen kontinuierlich. Daher ist es auf-grund der sich ändernden Technologien und derer Komplexität unabdingbar, bestehende Ansätze zu verbessern und zusätzliche neue Methoden für die Sicherheit des Endproduktes zu entwickeln und neben den etablierten Methoden anzuwenden.
Welchen Einfluss dies auf ein modernes Lenksystem hat und wie in diesem Zusammenhang das Zusammenspiel der ISO 26262 und ISO 21448 mit klassischen Methoden wie der Fehlermöglichkeits- und Einflussanalyse (FMEA) betrachtet werden muss, wird in dieser Arbeit dargestellt. Automobilhersteller sind heute bereits in der Lage Fahrzeuge automatisiert in bestimmten Betriebsgrenzen und Bereichen fahren zu lassen. Doch was muss getan werden, um sämtliche Betriebsgrenzen aufzuheben und ein Fahrzeug „autonom“ zu gestalten? Regulatorien, Standards und Richtlinien sind bereits heute auf dem besten Weg dorthin, doch ist es in der Praxis tatsächlich realisierbar?
Mit dieser Arbeit sollen unterschiedliche Einflussfaktoren und deren Auswirkung auf die Zuverlassigkeit
der mechanischen und elektrischen Bauteile eines Bohrmoduls aufgezeigt und miteinander verglichen werden.
Dazu werden zwei Zuverlassigkeitsanalysen mit je zwei verschiedenen Szenarien durchgeführt und
ausgewertet.
Das Szenario basiert auf der von der National Aeronautics and Space Administration (NASA) geplanten
Mission die Mondoberfläche und ihre oberen Gesteinsschichten zu analysieren. Zur Bewältigung dieser
Aufgabe soll ein mobiler Roboter mit einem Bohrmodul ausgestattet werden, um an unterschiedlichen Orten
auf der Mondoberfläche Bodenproben zu analysieren. Es sollen die Bohrungen bis zu einem Meter Tiefe durchgeführt werden. Ziel der Mission soll sein, die Geologie des Mondes zu erforschen [1].
Dieses Szenario dient als Grundlage die Zuverlässigkeit des Bohrmoduls unter extremen Bedingungen
zu ermitteln. Dabei stellt sich die Frage danach, welchen Einfluss verschiedene Temperaturen und
weitere Faktoren auf die Zuverlässigkeit des Bohrmoduls haben.
Das Ziel dieser Arbeit ist die Durchfuhrung einer Zuverlässigkeitsanalyse eines Bohrmoduls unter Hinzunahme
zwei verschiedener Standards unterschiedlicher Herangehensweisen. Dabei gibt jeder Standard eine
andere Art der Durchführung vor. Dabei ist das NSWC-10 stark abhängig von den konstruktiven Eigenschaften,
der FIDES von den vorherrschenden Umweltgegebenheiten. Die Analysen der Zuverlässigkeit
des Bohrmoduls werden sowohl für ein Erdszenario als auch für ein Mondszenario mit ihren jeweiligen
unterschiedlichen Gegebenheiten durchgeführt. Während der Analysen werden weitere Einflussfaktoren in
den Berechnungen berücksichtigt, die in den Standards als solche nicht aufgeführt werden. Zu diesen zählen
unter anderen die Temperaturschwankung auf dem Mond und das dort vorherrschende Vakuum. Diese
finden Berücksichtigung, um die extremen Bedingungen des Mondszenarios besser repräsentieren zu können.
Letztlich werden die beiden Standards hinsichtlich ihrer Anwendbarkeit auf jene Szenarien bewertet,
die ermittelten Ausfallraten erläutert und die Einflussfaktoren miteinander verglichen.
Zur Ermittlung der Zuverlässigkeit des Moduls werden vorab die Szenarien definiert und die konstruktiven
Eigenschaften der Bauteile ermittelt. Anschliesend wird die erste Zuverlässigkeitsanalyse mit
Hilfe des NSWC-10 durchgeführt. Dazu werden die einzelnen Ausfallraten der Bauteile bestimmt und verglichen.
Neben den vorgegeben Einflussfaktoren werden, falls möglich, spezifische Gegebenheiten des
Szenarios auf dem Mond einbezogen und diskutiert. Die zweite Zuverlässigkeitsanalyse erfolgt auf der
Grundlage des FIDES. Vorab werden dazu die einzelnen Betriebszustände eines Tages definiert, welche
als Grundlage für die weiteren Berechnungen dienen. Es wird versucht, den Tagesablauf des Roboters so
präzise wie möglich zu simulieren. Anschliesend kann die Ausfallrate des Bohrmoduls in Abhängigkeit
der vom FIDES vorgegebenen Einflussfaktoren ermittelt werden. Letztlich werden die ermittelten Werte
6 1 Einleitung
der beiden Standards miteinander verglichen, sowie mögliche Grenzen und Problematiken der Standards
aufgezeigt.
Gegenstand der hier vorgestellten Arbeit ist die Optimierung der Soft- und Hardware eines induktiven Niederschlagssensors im Rahmen des Verbundforschungsprojektes KIWaSuS (KI-basiertes Warnsystem vor Starkregen und urbanen Sturzfluten). Auf Grundlage von Testergebnissen in einem Testlabor für Niederschläge ergeben sich Optimierungsansätze zur softwareseitigen Behebung von fehlerhaften Daten, eine hardwareseitige Steigerung der Qualität und der Empfindlichkeit des verwendeten induktiven Wirbelstromsensors und der Verbesserung des Wasserablaufes auf der Oberfläche des Sensorgehäuses. Zur Durchführung der Optimierung wurde empirisch das Ausführen des zugrunde liegenden Programmes auf mögliche Konflikte analysiert und angepasst, die Hardware des Sensors modifiziert und auf seine Empfindlichkeit überprüft sowie die Neigung und das Abdichtungskonzept des Gehäuses verändert und bewertet. Die Ergebnisse zeigen, dass kapazitive Anpassungen der Spule zu einer starken Stabilität des Sensors führen und eine hohe Resonanzfrequenz eine Steigerung der Empfindlichkeit hervorruft. Zusätzlich verhindert die Ausführung des Programmes auf zwei getrennten Mikrocontrollern das Auftreten fälschlicher Daten. Anpassungen des Sensorgehäuses durch die Erhöhung der Neigung und die Verwendung eines randlosen Abdichtungskonzeptes führen zu einem höheren Abfluss, aber zu keiner Eliminierung der Frequenzänderung aufgrund der Masse des aufliegenden Wassers. Die Ergebnisse zeigen, dass vor allem die Anpassungen der Software und der Spulenkonfiguration die Stabilität und Empfindlichkeit des Messsystems steigert.
In dieser Arbeit wurde eine Motorsteuerung für mikrofluidische Peristaltikpumpen in Lab-on-a-Chip Systemen entwickelt. Neben der dafür notwendigen elektrischen Schaltung wurde viel Wert auf die softwareseitige Umsetzung gelegt. Zusätzlich zu der reinen Vorgabe von essentiellen Größen, wie beispielsweise der Drehzahl und dem damit geförderten Volumen, wird ein vielseitiges und zuverlässiges Steuerungssystem vorgestellt, das versucht Schwankungen im geförderten Flüssigkeitsstrom zu reduzieren. Um schon vor dem ersten Betrieb, des parallel zu dieser Arbeit gefertigten mechanischen Aufbau, die Leistung sowie Ausmaße der Schwankungen abzuschätzen, wurde der zu erwartende Volumenstrom auf Basis der geometrischen Ausmaße modelliert. Dadurch können Algorithmen zur Glättung des Flusses bereits in einer frühen Phase der Softwareentwicklung berücksichtigt werden. Für eine bessere Charakterisierung des mechanischen Aufbaus und Überwachung des Betriebs wurde das System um eine sensorlose Erkennung von Bewegungen des Motors ergänzt. Somit kann unter anderem die Zuverlässigkeit und Dimensionierung der verwendeten Motoren überprüft werden. Zusätzlich wurde der Prozess zum Verschweißen von thermoplastischer Elastomer Folie mit dem mikrofluidischen Chip optimiert.
Das kEFIR‐Projekt untersucht die praktische Anwendung von thermographischen Verfahren zur Analyse der strukturellen Integrität von Windkraftrotorblättern. Das Projekt entstand in Zusammenarbeit der Hochschule Ruhr West (HRW) mit der IQbis Consulting GmbH im Rahmen eines ZIM‐Förderprojekts des Bundesministeriums für Wirtschaft und Energie (BMWi). Hintergrund ist die zunehmende Anzahl von Windkraftanlagen (WKA) und der somit steigende Wartungsaufwand. Um einen reibungslosen Betrieb dieser Anlagen zu gewährleisten, und damit den besonderen Anforderungen an die Verfügbarkeit energieerzeugender Anlagen sicherzustellen, ist ein Bedarf an qualitativ hochwertigen Fehleranalysesystemen für im Betrieb befindlicher WKA von besonderer Bedeutung. Erfahrungsgemäß ist der Zeitaufwand für diese Inspektionen mit aktuellen Mitteln sehr groß und wird üblicherweise mit mehreren Arbeitstagen kalkuliert. Die Reproduzierbarkeit der gewonnenen Daten ist bei den derzeitigen Methoden meist nicht gewährleistet. Um frühzeitig auf Instabilitäten oder Schäden in den Rotorblättern einer WKA aufmerksam zu werden, ist die Entwicklung eines schnellen und qualitativ hochwertigen Fehleranalysesystems von zentraler Bedeutung. Ein Forschungsschwerpunkt in diesem Zusammenhang ist die Entwicklung von geeigneten bildgebenden und berührungslosen Verfahren, welche bei den Inspektionen eingesetzt werden können. Beispielsweise erlaubt der Einsatz thermographischer Sensoren eine Analyse nicht nur der Rotorblattoberfläche, sondern auch ihrer inneren Struktur. Weiterhin ist aufgrund des schnell wachsenden Marktes bei unbemannten Luftfahrzeugen, wie beispielsweise positionsstabiler Quatrocoptersysteme, eine zusätzliche Möglichkeit gegeben, die Inspektion von Windenergieanlagen mit Hilfe mobiler, kompakter und fliegender Analysesysteme zu unterstützen.
Es ist eine alltägliche Erfahrung, daß wir Urteile über gut oder schlecht, bzw. qualitativ hochwertig oder minderwertig eines Gegenstandes mit der Wahrnehmung des emittierten Geräuschschalls in Verbindung bringen. Der Geräuschlaut ist deshalb ein wichtiges Entscheidungskriterium bei der Auswahl eines Produktes, welches wahrnehmbaren Schall erzeugt. Die Fragestellung hinsichtlich der Geräuschqualität und des Geräuschdesigns stellt daher hohe Anforderungen an den Akustik-Ingenieur. Zum heutigen Zeitpunkt ist es jedoch nicht möglich, mit einer instrumentellen Meßtechnik Aussagen über die Eignung eines Geräuschschalls für ein Produkt zu machen. Es ist nicht möglich, kognitive Faktoren über eine instrumentelle Meßtechnik zu messen. Es reicht nicht aus, eine Geräuschgüte mit Bewertungsschemata wie dem A-bewerteten Schalldruckpegel
oder Lautheitsmodellen zu definieren. Diese lassen allein keine eindeutigen Aussagen über die Wahrnehmung von Geräuschen zu. Der vorliegende Beitrag ist als Ansatz für das Soundengineering von Fahrzeuginnengeräuschen zu sehen. Es wird anhand von Hörversuchen mit Fahrzeuginnengeräuschen ein objektiver Beschreibungskatalog ermittelt, der eine Aussage über die jeweilige Hörempfindung zuläßt.
Das vorliegende Paper gibt einen Überblick über das Verhalten von modernen, autonom navigierenden Fahrzeugen in Baustellen. Dabei werden besondere Herausforderungen für die autonome Navigation im Baustellenbereich benannt. Außerdem wird ein Überblick über die Sensorausstattung und die Fahrerassistenzsysteme von modernen Fahrzeugen gegeben und es werden Technologien vorgestellt, die für eine Verbesserung der autonomen Navigation durch Baustellen genutzt werden können. Es wird ein Versuch durchgeführt, der aufzeigt, wie zuverlässig moderne Fahrzeuge durch Baustellensituationen navigieren können. Dabei werden Schwachstellen, wie bspw. die mangelnde Verfügbarkeit von Fahrerassistenzsystemen bei niedrigen Geschwindigkeiten, aufgedeckt.